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The famous vanishing of the density of states (DOS) in a band gap, be it photonic or electronic, pertains
to the infinite-crystal limit. In contrast, all experiments and device applications refer to finite crystals, which
raises the question: Upon increasing the linear size L of a crystal, how fast does the DOS approach the
infinite-crystal limit? We present a theory for finite crystals that includes Bloch-mode broadening due to the
presence of crystal boundaries. Our results demonstrate that the DOS for frequencies inside a band gap has
a 1=L scale dependence for crystals in one, two and three dimensions.
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The discovery brought about by crystallography that a
crystal consists of an infinite array of unit cells with
periodic symmetry [1] has led to the birth of modern
condensed matter physics [2]. The quantum-mechanical
description of electronic degrees of freedom of the solid
state has led to the notion of the density of states (DOS),
and to the characterization of semiconductors by a fre-
quency range of a vanishing DOS, a band gap [2–4]. An
analogy can be drawn between electronic condensed matter
and nanophotonic condensed matter phenomena, as the
underlying mechanism for the formation of a band gap in
both cases is wave interference [3–5]. Indeed, photonic
crystals exhibit Bragg reflections for light [6]. When the
light-matter interaction is sufficiently strong, photonic
crystals develop a complete 3D band gap in the photonic
DOS that is the nanophotonic analogue of electronic
semiconductors and insulators [5,7,8].
Most theories of the DOS in condensed matter and

in nanophotonics consider infinite systems (L → ∞).
Examples are the plane-wave expansion for waves, both
electronic [2] and photonic [5], or the thermodynamic limit
in liquid state theory [9] that all exploit the underlying
periodic or continuous symmetry. Analytic theories for the
DOS of finite-size crystals are much more difficult to devise
[10]. In contrast, for many other observables, with the
electric conductance as prime example [3,11–13], scaling
as a function of system size has come to play a central role
in condensed matter physics.
The concept of a band gap, electronic [2] or photonic

[7,8,14,15], applies to infinite systems only. In contrast,
experiments and device applications obviously involve
finite crystals [16,17], which raises the question: How fast
does the DOS in the band gap of a finite crystal approach
the infinite-crystal limit? To our knowledge, there is no
theory that addresses a finite photonic band gap “crystal”
embedded in infinite free space. Developing a model for
such systems implies the inclusion of interfaces. Having

such a theory is a prerequisite to assess applications of
photonic band gap crystals that rely on the total DOS. For
a photonic medium, the local density of states (LDOS)
represented by ρðω; rÞ is defined as the number of states per
frequency per volume at position r. Integrating the LDOS
over a certain volume V results in the number of states in
that volume:

N ðωÞ ¼
Z
V
ρðω; rÞdr: ð1Þ

The DOS in this volume is defined as

ρðωÞ≡N ðωÞ
V

; ð2Þ

and the DOS of vacuum is ρvacðωÞ ¼ ω2=ðπ2c3Þ.
Let us consider a D-dimensional photonic crystal of

linear size L with lossless boundary conditions such as
periodic boundary conditions (PBC). In this crystal, Bloch
modes appear with a wave vector k in the first Brillouin
zone, a band index n, and eigenfrequencies ωnðkÞ. For a
photonic crystal with PBC, the DOS in LD can be
calculated from the Green’s function Gðω2Þ [18–20]:

ρPBCðωÞ ¼
2ω

LD

�
−1
π

�
ImfTrGðω2Þg ð3Þ

¼ −
2ω

πLD Im

�
lim
ϵ→0þ

X
k;n

1

ω2
nðkÞ − ω2 þ iϵ

�
; ð4Þ

¼ 2ω

LD

X
k;n

δ(ω2
nðkÞ − ω2): ð5Þ

As long as L is finite, k is discrete and ρðωÞ consists of a
sum of delta functions separated in frequency. Only in the

PHYSICAL REVIEW LETTERS 120, 237402 (2018)

0031-9007=18=120(23)=237402(6) 237402-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.120.237402&domain=pdf&date_stamp=2018-06-06
https://doi.org/10.1103/PhysRevLett.120.237402
https://doi.org/10.1103/PhysRevLett.120.237402
https://doi.org/10.1103/PhysRevLett.120.237402
https://doi.org/10.1103/PhysRevLett.120.237402


limit L → ∞ does the DOS become a continuous function
of frequency. Apparently, crystals with finite size L and
PBC do not constitute a good model for open systems.
Even if we supply the finite-size crystals with boundary
conditions different from PBC but still energy preserving,
we will always end up with a sum of discrete delta
functions for finite L.
Experiments are done on finite crystals with open

boundaries or in technical terms, on crystals with finite
support, with a volume Vs ¼ ðLsÞD. These crystals have a
continuous density of states for any value of the support Ls
in agreement with experiments.
When Bloch waves reach an interface, they can escape

into free space, which is an absorption event. Therefore, to
describe finite-support systems, we need absorptive boun-
dary conditions. We introduce an effective intensity reflec-
tion coefficientR that is an average of the angle-dependent
reflection coefficients of Bloch modes. The magnitude ofR
depends on the refractive index of the surrounding free
space. Basically, R describes the mixed character of the
boundary conditions [21–23]. The propagation length of a
Bloch mode becomes

L ¼ 1þR
1 −R

Ls; ð6Þ

where L is the effective linear size of the D-dimensional
crystal. For R < 1, the propagation lengths L of Bloch
modes are finite, and the wave vectors become complex
valued:

k → kþ ik̂=L; ð7Þ

where L functions as a mean free path. From here on, we
take without loss of generality R ¼ 0, implying L ¼ Ls.
Other values of R lead to the same scaling laws with L.
To calculate the finite-L correction to the density of

states, we insert Eq. (7) into the dispersion relation

ωnðkþ ik̂=LÞ ≈ ωnðkÞ þ iΔnðkÞ; ð8Þ

with

ΔnðkÞ≡ 1

L

����k̂ ·
∂ωnðkÞ
∂k

����; ð9Þ

where the absolute value ensures that the imaginary part
reflects absorption and not gain. The change of the real part
of the eigenfrequencies due to scattering or absorption is a
higher-order correction to be included in future work.
Incorporating dispersion [Eq. (8)] into Eq. (4) results in

ρðωÞ ¼
X
k;n

2ω

−π
Im

1

ω2
nðkÞ − ω2 þ i2ωnðkÞΔnðkÞ

: ð10Þ

The modification caused by our model is that the sum of
delta functions becomes a sum of Lorentzian line shapes.
Equation (10) is our central result. Remarkably, it allows us
to calculate the DOS in a finite-volume photonic crystal
from the band structure of an infinite crystal. It offers a
direct way to predict volume-averaged rates for processes
that depend on the DOS, such as spontaneous emission
from many sources distributed over the photonic crystal.
Figure 1 illustrates our model. In Fig. 1(a), the modes

for an infinite crystal are depicted as zero-linewidth peaks
that do not spill into the band gap. For the finite-support
crystals, Fig. 1(b), the modes become Lorentzians with
finite widths. As a result, the modes extend into the band
gap, thereby causing a nonvanishing DOS.
As a generic example of a 3D photonic band gap crystal,

we consider a cubic diamondlike 3D inverse woodpile
crystal that is known to exhibit a broad 3D photonic band
gap [24–26]. Figure 2(a) shows the photonic band structure

FIG. 1. Schematic presentation of crystal modes that contribute
to the DOS. (a) In an infinite photonic crystal, the continuum of
modes outside the band gap are represented by delta functions
(blue peaks). The resulting DOS, plotted in the third dimension
at the left, vanishes in the band gap and is only nonzero outside
the gap. (b) In a finite-support crystal, the modes become
Lorentzian (orange). Since the modes have finite widths, they
extend into the band gap, thereby causing a nonzero DOS in the
gap (orange-filled area).
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calculated using the plane wave expansion method [27] in
the irreducible Brillouin zone. The crystal is made of
silicon (dielectric constant ε ¼ 12.1) with cylindrical air
holes of radius R ¼ 0.24a, where a is the length of one side
of the tetragonal unit cell, while the other two lattice
parameters are a=

ffiffiffi
2

p
[28]. The DOS of the infinite crystal

in Fig. 2(b) shows the band gap. The corresponding DOS
for a finite-support crystal with volume N3a3=2≡ L3=2,
with N3 being the number of unit cells, is shown in
Fig. 2(c). We find that the DOS inside the band gap does
not vanish anymore due to the nonzero linewidth of the
modes. Expectedly, the DOS in the band gap decreases
with increasing crystal size.
To obtain the finite-size scaling of the DOS inside the

band gap, we plot in Fig. 3(a) the minimum DOS in the
band gap as a function of the inverse of the linear size L.
Considering the exponential decrease of the LDOS at
the center of a finite-size crystal as a function of its size
[17,31–33], it is remarkable that the minimum DOS in
Fig. 3(a) is very accurately described by a 1=L dependence.

To investigate the dependence on dimensionality, we
consider a generic 2D square lattice crystal of lattice constant
amade of dielectric cylinders that exhibits a band gap for the
s polarization (electric field out of the plane) [5]. The
minimum DOS inside the band gap is shown in Fig. 3(b)
for a finite-size crystal of area a2N2 ≡ L2 versus inverse
length 1=L. As in the case of a 3D crystal, we find the DOS
predicted by Eq. (10) to be well described by a 1=L scaling
in a 2D crystal [28]. It seems that deviations from the 1=L
scaling for very small crystal sizes happen earlier for 2D than
for 3D. This could be a dimensionality effect, as the surface-
to-volume ratio is larger in 2D than in 3D, but could also be
due to the fact that the crystal types are different.
The finite-size scaling of the DOS in 1D can be

calculated exactly; hence, we do not have to use our
model Eq. (10). In the Supplemental Material, we include
the case of a generic 1D Bragg stack in which the DOS is
calculated rigorously from the position-dependent LDOS.
The DOS in the band gap of the 1D stack also exhibits the
inverse linear scaling versus crystal size, establishing the
universality of the DOS finite-size scaling inside the band
gap for crystals of any dimension. Moreover, we have
calculated the finite-size scaling for the same 1D crystal
using our model of Bloch mode broadening. To our
satisfaction, the Lorentz model also shows a 1=L depend-
ence of the DOS [28].

(a)

(b)

(c)

FIG. 2. (a) Photonic band structure of a 3D inverse woodpile
crystal. The lattice constant of one side of the tetragonal unit cell
is a, while the other two are a=

ffiffiffi
2

p
. Air holes in the silicon

host (dielectric constant ε ¼ 12.1) have a radius of R ¼ 0.24a.
The highlighted blue area indicates the band gap. (b) DOS for
the infinite crystal as a function of the reduced frequency
ω̃≡ ωa=2πc ¼ a=λ. The DOS is scaled with 4=ða2cÞ, leading
to ρ̃vac ¼ ω̃2. (c) DOS calculated according to Eq. (10) for a
finite-support crystal of volume L3=2≡ a3N3=2, where N3 is the
number of unit cells [28].

3D

2D

(a)

(b)

FIG. 3. Minimum of the DOS in the band gap of (a) a 3D
inverse woodpile crystal and (b) a 2D square lattice crystal
versus the inverse length 1=L of crystals. Red circles denote
the DOS calculated using Eq. (10), while the solid blue curve
is the linear fit in the large size limit with slopes (a) m ¼ 1.36
and (b) m ¼ 1.13.
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Exact calculations for 2D and 3D photonic crystals are
beyond the scope of present-day computational power.
However, there is a 3D model that can be solved exactly
and that has a band gap in the infinite-size limit. The system
is a metallic sphere in free space that is lossless at a
particular frequency [34,35]. A homogeneous medium with
such a dielectric constant has a zero DOS at that frequency.
In a sphere of finite radius a, however, the DOS will be
nonvanishing and can be calculated by integrating the
LDOS inside the sphere [36,37]:

ρsphðωÞ≡N sphðωÞ
Vsph

¼ 4πjεj
Vsph

Z
a

0

ρsphðω; rÞr2dr; ð11Þ

with ε being the dielectric constant of the sphere, N sphðωÞ
the total number of states per frequency inside the sphere,
and Vsph ≡ 4πa3=3 the volume. Figure 4(a) shows the DOS
inside the sphere ρsphðωÞ as a function of sphere radius at a
fixed frequency for three typical negative values of the
dielectric constant. In each case, the DOS inside the sphere
decreases linearly with the inverse of the radius, which is
the same behavior as the DOS found for 3D, 2D, and 1D
photonic crystals [28]. We can also calculate the total
number of states N sphðωÞ for any radius, as shown in

Fig. 4(b). This figure, together with Eq. (11), demonstrates
that the inverse linear scaling of the DOS is due to
N ∝ LD−1, which is the surface area of the sphere.
Let us explore the origin of the universal 1=L finite-size

scaling of the DOS. Light illuminating a photonic crystal
with a frequency inside a stop gap will have its intensity
exponentially attenuated with a characteristic length LB
called the Bragg length. We introduce a simple shell model
where the contribution to the number of states inside a
finite-size crystal consists of a contribution of the bulk
and a shell near the interface of depth LB. We assume
that inside the bulk of the crystal the LDOS is
constant: ρðω; rÞ ≈ constant≡ ρbulk. The spatial variation
of the LDOS inside the shell is approximated by linear
interpolation:

ρðzÞ ¼ ρint þ
ρbulk − ρint

LB
z; for 0 < z ≤ LB; ð12Þ

where ρint is the LDOS at the vacuum-crystal interface and
z is defined as perpendicular to the interface that is located
at z ¼ 0. Simple integration of the LDOS to obtain the DOS
in the finite-support crystal and retaining the lowest power
of LB=L results in [28]

ρ ≈
�
1 −

fLB

2L

�
ρbulk þ

fLB

2L
ρint; ð13Þ

where f is the number of faces, with f ¼ 6 in 3D, f ¼ 4 in
2D, and f ¼ 2 in 1D. For a 1D photonic crystal with lattice
spacing d, the Bragg length equals [38–40]

LB ¼ 2d
π

ωc

Δω
; ð14Þ

where ωc is the central frequency of the gap and Δω the
width of the stopgap associated with the planes. For higher
dimensions, the same equation pertains when for d we take
the smallest distance for a set of crystal planes. In the case
of a photonic band gap (ρbulk ¼ 0), the shell model leads to
1=L finite-size scaling, since ρ ≈ ðfLB=2LÞρint, confirming
the scaling behavior found from the Lorentzian model.
With the shell model from Eq. (13) (ρint ≈ ρvac), we

predict the slope in Fig. 3(a) to be 1.54 and that in Fig. 3(b)
to be 1.03. These two slopes agree very well with the slopes
1.36 and 1.13, respectively, from our Lorentzian model
[Eq. (10)]. The differences between the slopes predicted by
the two models may be reduced by using more realistic
values for the reflection coefficients in the shell model.
However, given its simplicity, we refrain from extending
the shell model to include the complication of internal
reflection. We find that for all dimensions, both the
Lorentzian and the shell model predict a 1=L scaling of
the DOS. The fact that two such widely different methods
lead to similar results is a strong evidence that they reveal
the correct physical behavior.

FIG. 4. (a) DOS, normalized to vacuum, inside a lossless
metallic sphere with dielectric constant ε ¼ −0.1 (blue), ε ¼
−0.6 (red), and ε ¼ −1.1 (yellow) as a function of the inverse size
parameter λ=2πa, showing linear scaling for small values of
inverse radius. The slopes of linear fits are m ¼ 0.21, m ¼ 0.55,
and m ¼ 0.64 for ε ¼ −0.1, ε ¼ −0.6, and ε ¼ −1.1, respec-
tively. (b) Total number of states per frequency inside the sphere
N sph as a function of the surface area.
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We can also use the shell model Eq. (13) to predict the
scaling for the lossless metallic sphere, where we replace
the Bragg length with the decay length λ=ð4π ffiffiffiffiffiffi

−ε
p Þ and use

the exact value for ρint [28]. Our shell model predicts
a 3LB=a scaling of the DOS [28], leading to slopes in
Fig. 4(a) of 0.41, 0.68, and 0.72 for ε ¼ −0.1, ε ¼ −0.6,
and ε ¼ −1.1, respectively. These slopes agree well with
the exact values 0.21, 0.55, and 0.64, demonstrating the
accuracy of the shell model for the lossless sphere.
We find that in finite-support photonic band gap crystals,

almost all DOS contributions come from thin layers near
the interfaces. It is well known that the LDOS in the center
of a finite-support crystal scales exponentially with the size
[17,31,32]. However, for applications like the control of
spontaneous emission of bulk emitters [16,17], it is not the
local but the global DOS that comes into play. The inverse
linear scaling with size of this DOS indicates that realistic
clusters have to be very large to show substantial photonic
band gap effects. Conversely, applications that aim to
control spontaneous emission can benefit from a strongly
modified DOS when light sources are removed from the
thin layer near the crystal’s surface.
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