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Abstract

This educational work presents a new approach towards resonant interaction be-

tween classical light and matter. The interaction between light and matter is consid-

ered from three different points of view: the light picture (where the material degrees

of freedom have been integrated out, and leaving one with scattering theory), the

matter picture (where the radiative degrees of freedom have been eliminated and

providing one essentially with atomic physics). In addition the polariton approach

is discussed, in which the degrees of freedom of light and matter are treated on the

same footing. Although the first approach will by far given most of the attention,

we will frequently emphasize the equivalence of the three methods. Much of the

presented material is selfcontained.

We demonstrate that in the dynamical properties of multiple scattering of light the

“matter” properties play a dominant role. Several “paradigms of atomic physics”

will be discussed from the view point of light scattering theory. We shall introduce

the far-reaching analogy between the dielectric “Mie” sphere in classical optics, and

the two-level atom in semi-classical atomic physics. This mapping turns out to be

much more faithful than the widely used analogy between scattering theory for De

Broglie waves and classical waves. In scattering theory the semi-classical two-level

atom is equivalent to a point scatterer.
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1. PRINCIPLES

Light propagates along straight lines and with constant intensity [1]. This statement is only true
as long as the radiation does not encounter obstacles. Barriers can either absorb part of the light,
as for instance sun glasses do, or can change its direction of propagation, as water droplets in a
cloud do. The latter phenomenon is called “scattering”. When scattering is efficient for all colors,
the object will look white. When absorption is efficient for all colors, it will look black. The origin
of light scattering is often caused by refraction, which is - in its simplest form - described by the
well-known Snell’s law.
“Multiple scattering” will set in when light propagation is influenced by more than one obstacle.

Its occurrence is determined by both absorption and scattering of the individual particles. As a
rule of the thumb one might say that multiple scattering of a wave is most likely to occur in the
presence of a high concentration of obstacles that each have a large scattering efficiency and hardly
absorb any intensity. In a medium where multiple scattering of light fully determines the energy
transport, the so-called regime of radiative transfer, the underlying wave character of light seems to
be washed out. What remains, appears to be a diffuse intensity pattern with hardly any interesting
wave physics involved.
In the past experimentalists working in optics tried to avoid multiple scattering as much as possible.

The phenomenon was considered to be dull and in clean optical experiments often a nuisance. A
microscope with a milky lens system is useless, leave alone glasses made of opal. It should not come
as a surprise that most knowledge of classical multiple light scattering originates from astrophysics.
In stellar atmospheres multiple scattering of light is often a major means of energy transport, and
determines the emission and absorption line spectrum of a star. The light scattering occurring in the
interstellar medium cannot be eliminated as can be done in a terrestrial laboratory and a thorough
knowledge of the principles radiative transfer is of vital importance to understand the astrophysical
processes [2] [3].
It was not until the late fifties that the first indications arose that multiple scattering is full of

rich and fundamental phenomena. However, these advances were not made by addressing multiple
scattering of light, but by studying multiple scattering of electrons in the solid state. Electrons
scatter from a local variation in potential just like light scatters from a local variation in dielectric
constant. The resistivity of metals at low temperatures is to a large extent determined by multiple
scattering of electrons from the potentials of impurities. The wave character of the electron plays
a crucial role here since it explains why the resistivity is zero in a perfect crystal, and why only
deviations from this perfection lead to a finite resistivity. But in order to explain the diffuse motion
of an electron caused by scattering off impurities in the crystal, it is not necessary to incorporate
the interference of the electronic wave function in this scattering process. Ohm’s famous and classic
law stating that the resistance of a conductor is proportional to its length is deeply connected
to the “hardly interesting” diffuse propagation of light in the regime of multiple scattering. The
new developments in condensed matter focused on the role of interference of the electron wave
function in multiple scattering. Among the many new concepts that were introduced, “Anderson
Localization” is undoubtedly one of the most fascinating. It describes the vanishing of propagation
in the regime of very strong multiple scattering due to interference and was suggested as a model
for metal-insulator transitions [4].
If electron propagation can be inhibited by interference, why not also the propagation of light?

This question was posed only about fifteen years ago. Since then, optimizing multiple scattering
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of light has become an active area of research, with localization of light as its major goal. How to
characterize the strongly-scattering regime, and how to realize it experimentally were, and still are,
two major questions. The initial line of attack was to pack strongly scattering dielectric particles
closely and randomly. Indeed, many optimistic theoretical predictions have been put forward for
this regime [5] [6] [7] [8]. The scattering of light from one individual dielectric particle can be
optimized by tuning the wavelength of light right into a scattering resonance. In order to set a
scatterer into resonance its size should be matched to the wavelength of the light. This balancing
of length scales together with a suitable shape will turn the particle into a resonator for light. In
fact, in search for localization of light, the study of resonant multiple scattering (RMS) has become
an interesting and large topic by itself.
In this article we will summarize the many new facts that have recently been discovered by

examining the regime of RMS. Perhaps the most important conclusion that can be drawn from all
this is the unexpected contrast between the role played by resonances in multiple electron-impurity
scattering on one hand, and in multiple light scattering on the other. Despite the strong resemblance
between the physics of classical waves and of De Broglie waves many differences will be shown to
exist between the two subjects. It turns out that a much closer connection exists between the
theory of resonant scattering of light off finite-size objects and polariton theory. Polaritons are the
result of a resonant coupling of light to an object not through a local variation in dielectric constant
but through an internal degree of freedom of that object [9]. We speak of the object having an
internal resonance, and the polariton amplitude can be considered as a coherent superposition of
the light and the internal degree of freedom. We will demonstrate that scattering theory is capable
of treating RMS, polariton behavior and the (phenomenological) theory of radiative transfer on the
same footing in a unified picture.
In the rest of this introductory section we will first familiarize the reader with the most important

issues. Unless stated otherwise, all formula’s presented there will be accounted for later on in this
paper. Equations pertaining to electrons can easily be discriminated from those pertaining to light
as the fundamental parameter determining the time dependence is the energy E for electrons and
the frequency ω for classical waves.
An important aspect of the study of the influence of disorder on light propagation is the statistical

nature of the disorder. Averaging over disorder is a linear process so that conservation laws will
hold both for the non-averaged and the averaged case. The precise structure of the disorder is
- almost by definition - beyond the control of the experimentalist. Only some stochastic laws
governing probabilities are known. Many experiments effectively involve an average over a large
number of realizations. One example would be the measurement of the index of refraction of a gas,
in which case averaging over all the possible positions of the atoms in the gas seems a safe procedure.
The averaging procedure is usually a simple average over the distribution functions, and only in
pathological cases a weighted average is needed. In principle, experiments on quenched solid samples
can be envisaged that sample only one realization of the disorder. As no averaging occurs in these
type of experiments the optical properties may vary strongly from realization to realization (speckle).
Theoreticians find it difficult to deal with a single realization of the disorder. So many of the
theoretical concepts are defined as an average over realizations right from the start. To incorporate
observed fluctuations on single realizations, theoreticians calculate higher-order moments of the
distribution function associated with the observable. For instance fluctuations in the intensity I
can be investigated by calculating both the average of 〈I 〉 and the variance 〈I2〉 − 〈I 〉2 .
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1.1. Atomic Physics Versus Scattering Theory

When one starts out to describe the interaction between light and matter, the Hamiltonian and
the equations of motion following from it, contain both material and radiative degrees of freedom.
In most situations it is quite cumbersome to do the bookkeeping in both worlds at the same time.
A simplifying picture can be created if one can eliminate or ‘integrate out’ either one of them.
The remaining reduced Hamiltonian will be more manageable. Depending on taste and goal (what
experiment is being explained?) one can try to integrate out either the material degrees of freedom
or the radiative degrees of freedom.
In solid-state textbooks polariton behavior is treated in the full world: keeping track of both matter

and light. In this particular case, however, it is easy to integrate out the material degrees of freedom.
One winds up with radiation characterized by an index of refraction that is different from the one
in vacuum and changes substantially when the frequency approaches that of a material resonance.
At any time it is easy to trace back the material degrees of freedom. We will generalize the concept
of polariton behavior and define it to apply to any case where the index of refraction of light is
substantially changed due to the presence of a collection of resonating scatterers. The generalization
being that the resonance of the object is not limited to an internal atomic resonance but could also
be caused by an external, geometrical resonance. Later we will introduce a ‘polariton parameter’
that will quantify such polariton behavior. Polariton behavior is not necessarily a quantum effect,
as is often suggested implicitly in the literature. In our definition, the material degree of freedom
to which the light couples can be either a classical or a quantum-mechanical mode. The only
condition for the mode is that its excitation should be accompanied by a simultaneous excitation
of the polarizability (and thus of the macroscopic polarization). In fact, many other ‘quantum
effects’ acquire a more classical context, simply because they are general features of (resonant) light
scattering.
Scattering theory applies as soon as one creates a “light-in light-out” situation. Note that many op-

tical experiments are of this type. Channels “in” and channels “out” are connected mathematically
by an S-matrix. When light and matter interact scattering theory can be applied after integrating
out the material degrees of freedom and focusing on the light. Material properties that determine
this S-matrix are typically the “polarizability” and “conductivity” . If one wishes to describe the
light-matter interaction semi-classically, in which case matter is treated quantum mechanically but
the radiation classically, these quantum-mechanical material properties serve as input in a purely
classical scattering theory.
Rather than eliminating material degrees of freedom it is also possible to integrate out light modes

and focus on the matter excitations. This is the standard procedure in atomic physics. The math-
ematical treatment now simplifies to a quantum-mechanical eigenvalue problem of some effective
atomic Hamiltonian. The existence of light manifests itself in the radiation shift and the Einstein
spontaneous emission coefficients of the atomic eigenstates, as well as in the electric forces between
polarizable particles. We emphasize again that in principle both elimination methods should be
equivalent. In this paper we prefer the elegant framework of scattering theory to describe many
features of (semi-classical) light-matter interaction, and establish the connection with concepts of
atomic physics such as polarizability, spontaneous emission, induced dipole-dipole coupling and den-
sity of states. Comparison of both methods will lead to a deeper and more complete understanding
of the way in which light interacts with matter and vice versa. The following “atomic” items can
be exposed in a scattering theory for light.
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Firstly, we will demonstrate that in classical light scattering a very convenient and well-defined
object can be defined: a point scatterer that resonantly scatters light - either elastically or inelasti-
cally. One can think of point particles as being much smaller than the wavelength of the incoming
light. These point scatterers will enable us to investigate the regime of RMS in great detail. The
S-matrix of a point particle turns out to be surprisingly similar to the polarizability of an atom
with one excited state. A two-level atom is the paradigm of atomic physics and quantum optics
[10].
Subsequently it will be demonstrated that a “dwell time” can be rigorously defined in any scat-

tering theory. This dwell time can be interpreted as a measure of the time that a wave spends in a
specified region during a scattering process. This residence time can be large when the scatterer is
on resonance, even much larger than the typical time between collisions, so that a large delay will
accumulate in multiple scattering. These properties make the dwell time an important aspect of
RMS. The dwell time is the concept closest one can come to the lifetime of an excited level (inverse
of the Einstein coefficient for spontaneous emission) in a classical theory of elastic scattering. In
the case of light scattering by a two-level atom these times are not only analogous but are in fact
identical.
Finally, in atomic physics it is known that the (virtual) exchange of two photons between two

neutral particles, when triggered by vacuum fluctuations, gives rise to Van der Waals forces [11] [12]
[13]. If the process is set of by an ordinary incoming field the interactions are referred to as induced
dipole-dipole coupling. Can these two atomic physics paradigms also emerge in light scattering
theory?
A simplistic approximation in multiple-scattering theory is the “independent-scattering approxi-

mation (ISA)”. A well-known result of the ISA is the expression for the extinction mean free path
�ext = 1/nσext , in which n is the density and σext the extinction cross-section of the scatterers. The
extinction mean free path describes the decay of the coherent light beam because energy is used for
scattering and absorption. (In this article several types of mean free paths will be examined and
we will have to differentiate between them by adding subscripts). Within the ISA only a limited
set of all scattering events is included: The condition is that only those scattering events count in
which every scatterer is visited by the light at most once. No loops of any form are allowed. The
range of validity of the ISA will be treated later. The ISA approximation is very popular, one of the
reasons being that it is quite difficult to go beyond. It is frequently used without further comment
and without justification.
Extensions of the ISA are called “dependent scattering”. For instance repetitive scattering between

two scatterers, a phenomenon that we will call “recurrent scattering”, is not included in the ISA and
is one out of many dependent scattering effects. The influence of dependent scattering is large when
resonant scattering is involved [14]. Apart from producing corrections to well-known ISA results,
the inclusion of dependent scattering supplies the desired connection with induced dipole-dipole
coupling raised above. This connection is supported experimentally. Recently, one has directly
observed the occurrence of recurrent light scattering in a resonant scattering medium [15].

1.2. Resonant Multiple Scattering (RMS) of Light

One of the purposes of this paper is to elucidate the difference between the “coherent light beam”
and the “diffuse intensity”, which unfortunately by convention is referred to as the “incoherent”
contribution. Both “coherent” part and “incoherent” part result from multiple scattering. Their
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difference has been, and still is, the source of much confusion. The coherent beam is the remnant
inside the medium of the source and decays exponentially in space. The diffuse beam refers to the
light that comes out of the sample in all directions and its intensity decays only algebraically with
distance inside the sample. Depending on the mean-free path relative to the size of the system
either one of them can dominate.
The confusion arises from the fact that there is nothing incoherent about the diffuse beam. In the

dielectric inhomogeneous systems that we envisage every scattering process to preserve phase. As
a result the diffuse beam has the same phase-coherence properties as the coherent beam. In fact,
the confusion is initiated by earlier studies on radiation trapping [16]. In elastic light scattering
incoming and outgoing light waves have the same frequencies and are phase-locked. In the case
of radiation trapping one also deals with resonant multiple light scattering, but now it involves an
incoherent sequence of absorption and emission cycles. The absence of phase-locking in fluorescence
causes many subtle difference with elastic scattering processes, such as the absence of interference
effects.
Some simple theoretical results on the behavior of the coherent beam can be obtained without

explicitly resorting to multiple-scattering theory, but can simply be envisaged as the wave prop-
agating in a homogeneous absorbing medium (sometimes known as the effective medium [17] [18]
[19]). This is impossible for the diffuse intensity and a thorough understanding of multiple scatter-
ing is required in this case. For this reason the diffuse intensity is often considered as the genuine
multiple scattering. The ISA approximation applied to the propagation of the diffuse intensity is
equivalent to the Boltzmann approximation in transport theory. The energy carried by the diffusive
beam comes from the “absorption” suffered by the coherent beam if there are no explicit energy
loss mechanisms. The “absorption” of the coherent beam is thus no real absorption and is therefore
called extinction. It turns out that the ISA approximation for the coherent beam, together with
the well-known Boltzmann approximation for the diffuse intensity describes this energy balance
properly. Again, it is very difficult to do better while keeping the balance in tact. In fact all theory
on radiative transfer relies on the ISA and the Boltzmann approximation.
The coherent beam is characterized by a complex-valued frequency-dependent index of refraction
m(ω), which can be associated with the index of refraction of an “effective medium”. The real and
imaginary part of the refractive index define a velocity, the phase velocity vp, and a decay length,
or extinction mean-free path, �ext according to

m(ω) ≡
c0
vp

+ i
c0

2ω�ext
≡ η + iκ . (1.1)

The factor of two in the definition for �ext stems from the fact that the coherent intensity, which
is the coherent amplitude squared, decays twice as fast as the coherent amplitude and thus with
length �ext. The relation between wave vector and frequency of the coherent beam, the dispersion
law, k = η(ω)ω/c0 will give rise to polariton behavior when the frequency of the beam is near a
resonance of the scatterers. In the electromagnetic picture polariton behavior is thus a property
of the coherent beam. Typical polariton behavior is shown in the dispersion relation presented in
Fig. 1, a figure that must be familiar to many readers as it features in many text books.
Rather than limiting the treatment of the polariton to explaining the dispersion curves we will go

considerably further in this paper and investigate the dependent-scattering corrections to the po-
lariton and discuss polariton aspects of the diffuse intensity. Generally speaking, multiple-scattered
diffuse intensity can be described mathematically by a (frequency-dependent) diffusion constant,
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FIGURES

FIG. 1. Typical dispersion relation for a polariton. The following parameters have been used: S = 0.25 and damping T2 = 12/ω0,

corresponding to a polariton strength of P = 1.5. For definition of these parameters we refer to Section IV.B.2.

D(ω) =
1

3
vE (ω) �tr (ω) . (1.2)

consisting of a “transport mean free path” �tr and a “transport speed of light” vE. The temptation
is large to use for �tr the extinction mean free path �ext and for vE the phase (or possibly group)
velocity found for the coherent beam, and to forget about transport theory. It is known for a long
time already that anisotropically scattering particles have a transport mean free path different from
the decay of the coherent beam, that is �tr �= �ext. Only recently a theory was developed which
showed that the transport velocity vE in Eq. (1.2) is determined by the energy flow [20]. It was
found that neither phase nor group velocity of the coherent beam can be used. Multiple scattered
diffuse light does not see the “effective medium” felt by the coherent beam, and its propagation is
quite different and characterized by the transport velocity. This speed of propagation of the diffuse
light in multiple scattering can be very small when the scatterers are close to a resonance. The large
deviation of vE from vp is due to the matter, and shows up already in the lowest order of multiple
scattering theory (ISA). An important conclusion: In the theory for the light intensity the matter
fully reappears although it was integrated out earlier!
A velocity superficially similar to the above transport velocity turns up in the description of

(incoherent) radiation trapping mentioned earlier. In that case the light diffusion is like the one of a
billiard ball that suffers from temporary trapping at each site before moving the next. Contrary to
the transport mechanism associated with the transport velocity the much less interesting radiation
trapping involves an inelastic, incoherent transport mechanism where interference plays no role.
In yet another context an “energy velocity” showed up in the work of Brillouin [21] which was
expanded on later in atomic physics and polariton studies at the end of the sixties, with important
contributions by Loudon [22] [23] and Pari and Birman [24]. Since group and phase velocity of a
dispersion relation with an S-curve (a polariton) can exceed c0, this new velocity was introduced
to have a velocity that explicitly did not violate causality. This velocity was implicitly assumed to
describe properties of the coherent beam and no link was made then with multiple scattering and
long-range diffusion of light. A non-linear variant of the energy velocity occurs in the theory of
self-induced transparency [10] [25]. In that case it really describes pulse propagation.
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1.3. Multiple Scattering of Electrons

As we will explain in this paper, electrons suffer much less from time delay in RMS than light. The
question why electrons and light behave so differently in RMS is fascinating. In electron-impurity
scattering the “effective medium” or coherent beam describes the velocity vE for the diffuse density of
electrons satisfactorily. The relation between energy and wave vector of the electron, the dispersion
law E(k), is a property of the coherent beam and is given by the underlying crystalline structure
and hardly by the impurities. The dispersion relation of the crystal defines an “effective mass” m∗.
For most purposes the electron velocity featuring in the diffusion constant can be obtained from
the dispersion relation in the following way,

vE (kF ) =
1

h̄

(
∂E(k)

∂k

)
k=kF

=
h̄kF
m∗

, (1.3)

where kF is a wave number determined by the Fermi exclusion principle for fermions. A wave
vector analogy between light and electrons k ←→ kF can be used. For light the effective medium
defines a phase velocity vp = ω/k different from c0. For electrons we infer that vE ∼ kF ∼ 1/vp

and apparently the electron transport velocity is inversely proportional to its phase velocity. No
retardation effects, in contrast to light, are present for electrons.
The absence of microscopic time-delay factors in velocity and diffusion constant for an electron

scattering from impurities (in solid state physics better known as “mass-enhancement factors”)
may at least be called surprising and must be due to some underlying cancellation mechanism.
The appearance of “surprising” cancellation factors in transport theory is well-known by solid-state
physicists and applies to other transport quantities, though not all [26] [27] [28]. The cancellation
is due to existence of conservation laws in transport theory, and in this particular case due to the
conservation of the probability. The fact that such laws are important for the velocity in multiple
scattering agrees with our previous observation that the transport velocity of light is to be associated
with “energy transport”. An important conclusion that could be drawn by comparing light and
electrons is that modifications of conservation laws result in large modifications and thus a deeper
understanding of such cancellation theorems.
Other velocities show up in solid-state physics, some of which are not subject to cancellation

theorems. We will mention the “drift velocity” vd of the electrons in the presence of an applied
electric field E in a conductor. A “linear-response argument” makes this velocity proportional to
the applied field so that it is given by the relation,

vd = µd ·E. (1.4)

Here µd is usually called the drift mobility tensor. It is instructive to compare this formula to the
one defining the conductivity tensor µe that describes the induced charge current density Je as a
result of the driving external field,

Je=σe · E ≡− enµc · E. (1.5)

(The subscript of σe is necessary to distinguish it from the cross-sections σ that appear in various
places in this article). The electric conductivity is known not to be subject to any time delay
factors. Relation (1.5) defines the conductivity mobility tensor µc. It describes the resulting current
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as a result of a driving electric field, and not the velocity. We believe that both mobilities are
frequently mixed up in the literature. They certainly do not need to be the same as the relation
between any current and velocity in quantum mechanics is given by J = ρ p , where ρ is the density
operator. As ρ is an operator and not simply a constant as in Newtonian mechanics and subject to
the conservation laws imposed by quantum mechanics, the two mobilities are differently influenced
by mass-enhancement factors. In the language we introduced in the previous subsection one could
say that the drift mobility tensor µd is a property of the “coherent beam”, whereas the conductivity
mobility tensor µc is a property of the “diffuse beam”.

1.4. Stationary and Dynamic Multiple Scattering

A distinction between stationary and dynamic measurements is important in any discussion on
transport of waves. It is physically obvious that time delay can only be measured in dynamic
experiments. It seems to be less obvious to decide which transport quantity is dynamic and which
one is stationary. To give an example, the DC conductivity and the diffusion constant are often
treated on the same footing in multiple scattering of an electron. However, contrary to the wisdom
of many textbooks on condensed matter physics, it is impossible to obtain the diffusion constant
from one stationary measurement.
It is beneficial to treat the velocity vE and transport mean free path �tr as two individual parame-

ters characterizing the multiple scattering regime, rather than only considering their product in the
form of the diffusion constant. A stationary experiment yields information on the transport mean
free path only. The transport velocity can only be obtained from a dynamic experiment.
Perhaps the most important stationary transport coefficient for multiple light scattering is the

(DC) transmittance T . In the simplest but common case of a disordered slab with thickness L and
surface A the transmittance, summed over all channels in and all channels out, rigorous transport
theory yields, [3]

T = f ×
Ak2

2π
×
�tr

L
. (1.6)

The factor Ak2/2π is the number of conducting channels per steradian (including two polarization
states). A channel is a cavity mode, and in optics often called a coherence area (or a Fresnel zone).
It is essentially a discretization of all possible incoming and outgoing angles in such a way that one
channel is a coherent source. Here f is a constant factor of order unity that depends on geometry
(f = 4/3 for the slab geometry).
The stationary transmittance of electrons is deeply connected with the conductance G (inverse

resistance) c.q. conductivity σe in solid-state physics. For isotropic conductors the conductivity
tensor σe = σe I. In solid state physics a famous relation between G and T is given by a formula
first proposed by R. Landauer in 1957 [29],

G ≡ σe
A

L
=
e2

h
T . (1.7)

This relation gave rise to skepticism in the solid-state-physics community since it does not always
coincide with Kubo’s original linear-response expression for the conductivity. The applicability of
Landauer’s formula beyond simple transport theory, where T is no longer given by relation ( 1.6),
is an active field of research [30]. For our purpose it is most satisfying to see that Eqs. (1.6) and
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(1.7) show that the conductivity σe does not depend on the dynamic transport velocity, but only
on the transport mean free path.
The importance of the transmittance of electrons for the theory of conduction increased consider-

ably after the standard scaling theory of Anderson localization had been developed [31]. This theory
scales the size of the random medium, and as such aims to do predictions about the occurrence of
localization. In the simplest approach the universal scaling parameter of this theory is the transmis-
sion T . In view of this observation, the “vanishing of diffusion” predicted by P.W. Anderson in his
famous paper [4] turns out to be a vanishing of the transport mean free path (and thus of the DC
conductivity). This is a far-reaching notion: For RMS of light the transport velocity is non-trivial
and can also be very small. For light the “vanishing of diffusion” would be an ambiguous statement.
The scaling theory is far beyond the scope of this article and will not be discussed any further.
Apart from the transport velocity itself, an important “dynamic” transport quantity is the density

of states (DOS) per unit volume. This quantity represents the number of microscopic states and
can be defined for light and electrons. For light N(ω) counts the number of states in an infinitesimal
frequency range, for electrons N(E) counts the number of states in an infinitesimal energy range.
For a large volume V the number of states turns out to be proportional to the volume and it is
convenient to introduce the density of states per unit volume. For electrons we use the common
notation ρ (E); In this paper we will use the notation W for the density of electromagnetic states
per unit volume because it will be shown to coincide with the electromagnetic energy density. In
both cases N is the total number of microscopic states per frequency or energy interval. The inverse,
1/N, can be associated with a frequency (energy) width ∆ω (∆E). Using ∆ω∆t � 1 (for electrons
∆E∆t � h̄) yields that ∆t = N (for electrons h̄N), demonstrating that N is associated with a time
scale of the cavity: a small (large) density of states implies a fast (slow) response.
Among the many situations where the DOS plays a role we just mention the Einstein relation,

which takes for electrons the following form [32],

σe(E) =
e2

h̄
ρ(E)D(E) . (1.8)

This relation establishes the fundamental connection between electronic conductivity and diffusion,
and is one of the most important results of electron transport theory. The left hand side of Eq. (1.8)
is not defined for light because Eq. (1.5) has no meaning for light. Fortunately the Landauer formula
enables us to rewrite the Einstein relation in terms of transport variables that do also exist for light.
For the slab geometry [33] one deduces,

T (E)
L

A
= 2πρ (E)D (E) . (1.9)

We will demonstrate that the corresponding result for light transport reads,

T (ω)
L

A
= 2πW (ω)D (ω) . (1.10)

In the context of our discussion on the difference between dynamic and stationary response these
two equations are fascinating since they relate two dynamic transport properties (rhs of Eqs. (1.9)
and (1.10)) to one stationary transport quantity (lhs). For the case of light the time-delay in D (ω)
is apparently canceled by W (ω), because T (ω) describes the stationary flow of energy, which by
definition must be free from delay effects. Examples can be given where delay factors as large as a
hundred cancel in the right hand side of relation (1.10).
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2. CLASSICAL WAVES VERSUS DE BROGLIE WAVES

Despite the historical fact that Maxwell’s electromagnetic wave equations were formulated some
thirty years before the first formulation of Schrödinger’s equation for De Broglie waves showed up,
quantum phenomena have always received more attention. “Quantum” was, and perhaps still is,
in fashion. So it is not surprising that modern formulations of classical wave propagation make
use of methods that were originally developed for electrons. This is a logical consequence of the
close resemblance of the wave equations. Analogies and differences between light and electrons
will continue to appear in the rest of this work. An interesting observation one can make is that
many “quantum phenomena” were called “quantum” only because they were studied for De Broglie
waves but, being essentially interference phenomena, they also exist for classical waves. Recent
experimental work on optical systems has indeed shown the existence of many of these [34], such
as weak localization and quantized conductances.
We will write the equations of motion for light propagation in Schrödinger form which is,

ih̄∂tΨ(r, t) = HΨ(r, t) . (2.1)

The Hamiltonian operator determines the time-evolution and is given by H = h̄2p2/2m+ V (r) for
a particle of mass m, momentum p in a potential V (r). The quantized momentum p denotes the
operator −i∇ . 1

The corresponding eigenvalue equation for energy E is,{
p2 +

2m

h̄2 [V (r)− E]
}
ΨE(r) = 0 . (2.2)

In the rest of this paper we shall use units such that

m ≡
h̄2

2
. (2.3)

Maxwell’s equations in the presence of a static dielectric substance ε(r) can be combined to the
so-called Helmholtz equation for the electric field E(r, t). Throughout this paper we will use the
Heaviside-Lorentz (Rationalized Gaussian) units as discussed in Table 2 of Jackson [35]. In these
units the Helmholtz equation reads,

ε(r)

c20
∂2
t E(r, t) + ∇×∇×E(r, t) = 0 . (2.4)

The vector nature of light and the second derivative with respect to time are two differences with the

1We will use a notation slightly different from conventional quantum mechanics in order to make the

analogy with classical waves as clear as possible. In this way we can use the words “momentum” and

“wavenumber” next to each other. In addition in formulas when no confusion arises we will not make a

notational difference between the momentum operator p and its eigenvalue p.
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Schrödinger equation. In terms of the quantum-mechanical momentum operator we can represent
the double rotation formally as −p2∆p. The tensor of rank two defined by

(∆p)ij ≡ δij −
pipj
p2
≡ (I− p̂p̂)ij , (2.5)

projects upon the space of transverse fields (normal to p). The eigenvalue equation for frequency
ω can be written as, {

p2∆p +
(
ω

c0

)2

[1− ε(r)]−
(
ω

c0

)2
}
Eω(r) = 0 . (2.6)

Comparing both eigenvalue equations leads us to identify the “light energy”

Elight = (ω/c0)
2 , (2.7)

which shows that it is proportional to the square of the frequency, and a “light potential”,

Vlight(r) = [1− ε(r)]Elight . (2.8)

Since for free motion E ∼ p2 and ω2 ∼ Elight ∼ p2 we find that the dispersion law is parabolic for
quantum particles and linear for light. As ω2 is always positive, the bound states of the Schrödinger
equation have been lost in our identification scheme for light in dielectric systems (ε(r) > 0).
The “energy dependency” of the light potential has far reaching consequences for multiple light

scattering and is a crucial property when comparing light with electrons. One of the manifestations
of the energy dependence is well known and concerns light scattering at low frequencies. Since
the light potential Vlight ∼ Elight it follows that the strength of the potential is “small” at “small”
frequencies, and one may expect the Born approximation for the scattering cross-section σscat to
apply. Then,

σscat(ω) ∼ |Vlight|
2 ∼ E2

light ∼ ω
4 . (2.9)

This strong frequency dependence of the scattering cross-section was first predicted by Lord Rayleigh
[36] in the previous century and explains why blue sun light is considerably more scattered in the
Earth atmosphere than red sun light. In contrast to this long-wavelength behavior the cross-
section for electrons goes to a constant - the s-wave limit - and usually far from the first Born
approximation. At large energies light scattering can be treated in the (by no means simple)
framework of geometrical optics [42].
By construction energy states are stationary solutions of the wave equation. For one (positive)

energy the identification scheme between light and quantum waves is one-to-one. The conclusion
is that light and quantum waves behave “analogously” in stationary experiments. A dynamical
situation is one in which more than one energy eigenfunction features. As soon as one addresses
dynamical situations the energy dependence of the interaction will enter in and will cause differ-
ences between results obtained for electrons and electromagnetic radiation. The application of
conservation laws is an example of an inherently dynamical situation. Indeed, conservation laws in
light scattering are notably different from the ones in Schrödinger quantum theory. In general a
conservation law is a relation between a density W and a current density J taking the form,

∂tW +∇·J =0 . (2.10)

From this formula it is clear that the density W characterizes the dynamic (∂t �= 0), and the current



A. Lagendijk, B.A. van Tiggelen/Physics Reports 270 (1996) 143-215 157

density J the stationary (∂t = 0) properties of wave propagation.
For quantum mechanical wave functions in a real-valued potential field it is easily shown from

Eq. (2.1) that

W = |Ψ|2 ; J =
h̄

m
Re Ψ∗pΨ , (2.11)

interpreted as a probability density and a probability current density. On the other hand for light
in a lossless dielectric,

W =
1

2
ε (r) |E|2 +

1

2
|B|2 ; J = c0 Re E∗ × B , (2.12)

representing electromagnetic energy density and Poynting vector. Note that ε(r) and E(r) depend
both on position r and can be strongly correlated. So the factor ε(r) in Eq. (2.12) causes a difference
between the conserved quantity W in Eqs. (2.11) and (2.12). In section III.B.3 we point out how
this difference can be directly related to the energy dependence in the light potential. Here, it
suffices to conclude that light and electrons behave differently in dynamic situations.
Contrary to the difference in the densitiesW , when using our identification scheme, the associated

current densities are quite analogous. The major difference is caused by the vector nature of light.
In fact, it is the current density that is measured in typical stationary experiments. This suggests
one more time that light and electrons should behave “analogously” in stationary situations.
The identification scheme between the two wave equations becomes even clearer by ignoring po-

larization indices and replacing the electromagnetic field by a scalar field Ψ (r, t). The Helmholtz
equation is then replaced by

ε(r)

c20
∂2
tΨ(r, t)− ∇2Ψ(r, t) = 0 . (2.13)

The quantity ε (r) could still be called the dielectric constant, but the identification with a micro-
scopic charge distribution has been lost in a scalar picture. The possible mapping on dynamics of
sound will not be discussed here. The associated density and current density for scalar waves are
[37],

W =
1

2
ε(r)

∣∣∣c−1
0 ∂tΨ

∣∣∣2 + 1

2
|pΨ|2 ; J = Im (∂tΨ)∗ pΨ . (2.14)

It is sometimes theoretically convenient to replace light by a scalar field. In that case one can
think of c−1

0 ∂tΨ as the electric field, and pΨ as the magnetic field. For most cases discussed in
this paper no essential physics will be lost after implementing this simplification. By replacing the
double rotation ∇×∇× in the Helmholtz equation (2.4) by −∇2 +∇∇· one can infer one term
has gone lost in the scalar picture. This term is called the “logarithmic derivative” since it is, by
Maxwell’s first law, proportional to the logarithmic space derivative of the dielectric constant. It is
caused by the longitudinal field in Maxwell’s equations, or equivalently, by polarization charges on
the boundaries.
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3. RESONANT INTERACTION OF LIGHT AND MATTER

In this section we will discuss the interaction between light and matter from two different view-
points. First we investigate how a material degree of freedom responds to a driving field through its
polarizability. The simplest model is to use a polarizable classical or quantum-mechanical oscillator.
In the second part we shall discuss how propagation of light is influenced by polarizable matter.
We will look for the simplest objects from which light can be scattered according to the restrictions
imposed by scattering theory. Our aim is to emphasize the equivalence of two apparently different
methods, and to stress the equivalent role of light and matter in a unifying way.

3.1. Field Driven Oscillator

Consider an oscillator that is polarizable. This means that it can be driven by an electric field.
The degree of freedom associated with the polarization has some (generalized) space coordinate Q.
The oscillator is coupled to the electromagnetic field through its dipole moment. We assume the
dipole moment to be a function of the coordinate Q and perform a Taylor expansion,

µ (Q) = µ(0) +
∂µ

∂Q
(0) ·Q+ · · · . (3.1)

If the polarizable oscillator is a harmonically bound bare electron the dipole moment can be sim-
plified according to (∂µi/∂Qj) = eδij , in which e is the electronic charge. The interaction of the
oscillator with the optical field is given by Vint = −µ · E, and by using expansion (3.1) we find a
contribution proportional to Q. As minus the gradient of an interaction represents a force, this
term gives rise to a total force on the oscillator,

F =
∂µ

∂Q
·E. (3.2)

Apparently one can only drive an oscillator by an optical field if its dipole moment changes during
vibration. The classical equation of motion reads,

d2Q(t)

dt2
+

2

T2

dQ(t)

dt
+ ω2

0 Q(t) =
q

m
E(t) . (3.3)

The oscillator has been given an eigenfrequency of ω0; For simplicity we adopted (∂µi/∂Qj) = qδij .
The phenomenological dephasing time T2 has been introduced that describes the interaction of
the oscillator with its environment. Later we will make the connection with scattering theory and
find that T2 should at least include radiation damping. The relative importance of radiative and
radiationless decay is characterized by a parameter called the albedo a, a ≤ 1. A situation with
albedo a = 1 implies radiation damping only, and sets an upper limit to T2. For this reason the often
treated lossless polarizable oscillator (T2 = ∞) is unphysical. Radiative decay can be prohibited
only in some special cavities.
The solution of equation of motion (3.3) contains two classes of responses. The first type is the

transient response and the second is the force-induced reaction. The transient response will have
died out after the elapsed time exceeds several damping times and the driven reaction is the only
lasting effect.
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In principle any electromagnetic field should be real-valued and complex notation should be used
with care. If we assume that the interference between rotating and counter-rotating fields does not
survive cycle averaging, the simpler notation of complex fields can be used. The treatment of the
response to a harmonic driving electric field E(t) = E0e

−iωt is then straightforward and can be
found in any book on mechanics, electricity, or optics. The result is

Q(t) =
q/m

ω2
0 − ω2 − i2ω/T2

· E0e
−iωt . (3.4)

The driven displacements give rise to an induced dipole moment p (no confusion will arise with the
momentum operator p introduced earlier)

p (t) = q Q(t) ≡ α(ω) · E0e
−iωt, (3.5)

where the (here diagonal) complex polarizability tensor

α (ω) =
q2/m

ω2
0 − ω2 − i2ω/T2

I, (3.6)

has been defined.
Standard arguments based on energy flow, show that the rate at which energy (cycle-averaged) is

absorbed from the radiation field by the oscillator from a time-varying electric field with frequency
ω is [38],

∂Urad

∂t
= −

∂Uosc

∂t
= − � E(t) ·

dp

dt
�cycles = −

ω

2
E∗0 · Im α · E0. (3.7)

It is useful to connect the volume loss due to extinction to a loss per area, as expressed by an
(extinction) cross section. The relation is,

∂Uosc

∂t
= σextc0 ×

(
1

2
E2

0

)
⇒ σext =

ω

c0
Im α . (3.8)

So far we only considered the ‘matter’ part of the problem. The extinction cross-section informs
us about the rate of absorption out of the incoming beam induced by the oscillator. Where is this
energy going? Strictly speaking the present ‘matter’ treatment of the oscillator does not allow us
to answer that question. Part of the light captured from the incoming beam will be reradiated and
requires therefore a treatment of the light propagation. All that one can say is that the reradiation
process will be determined by |α|2.
The total cycle-averaged current radiated by an oscillating dipole is known to be ω4|α|2E2

0/3c
5
0

[39]. This will later be verified in scattering theory. The scattering cross section can be found from

Jscat=σscatc0 ×
(
1

2
E2

0

)
⇒ σscat =

2ω4

3c40
|α|2 . (3.9)

The proportionality factor ω4/c40 can readily be understood when realizing that the polarizability
has the dimension of a volume and the cross-section the one of an area. Now we can tell how much
of the light taken out of the beam will finally be reradiated and how much is really absorbed. For
this purpose one defines the albedo

a (ω) =
σscat

σext
=

2

3

ω3

c30

|α|2

Im α
=
T2

Trad
≤ 1 . (3.10)

Here Trad = 3mc30/q
2ω2 is the radiative decay time of the oscillator. Albedos ranging from 0.99999
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(colloidal dielectric spheres and cold atomic gasses [40]) to 0.00001 (molecular oscillators in solids
and liquids [41]) are relevant. In condensed matter the albedo can be very small because the
polarizable oscillator is strongly coupled (due to small distances) to a large number (due to high
density) of non-radiative decay channels. When the only dephasing process is radiation damping
the albedo is equal to one and T2 represents the radiation time, its maximum value. In that case
the direction of the light is changed by the oscillator, without loss of energy.

3.2. Single Scattering of Light

The investigation of multiple scattering demands first of all a good understanding of single scat-
tering. Single scattering is the building block for multiple scattering. As has been pointed out in
the introduction the onset of multiple scattering is boosted when a number of conditions is met.
Firstly, the particles must scatter the light to a very large extent with conservation of energy. In
case of energy loss in single scattering, multiple scattering will be exponentially small in the order
of scattering. Secondly, the multiple scattering may be enhanced when the single scattering is on
a resonance. At a resonance the scattering cross-section reaches its maximum “unitary limit” ,
where it is proportional to the square of the wavelength. If single scattering is maximal, multiple
scattering can be anticipated to be large as well. With modern lasers the frequency of the exciting
light can be tuned accurately and chosen to coincide exactly with a resonant frequency.
Because of its simplicity the “Born approximation” for single scattering is popular in solid state

physics. It avoids detailed calculations of single scattering and a minor extension suffices to have
control over conservation laws. However, resonant scattering can never be addressed in this ap-
proach. As a matter of fact, the Born series is known to diverge near a resonance.
In the following subsections we will discuss a very simple model for single scattering of light, and

compare it with the exact solution for a dielectric sphere. A number of general properties of single
scattering will be addressed which will be of vital importance in multiple scattering: resonances,
energy conservation, time delay, and near field. Before doing so we would like to convince the reader
that the Mie solution - which already represents an oversimplifying picture of a typical particle in
a typical experiment - is too complicated to use in a general multiple-scattering theory.

3.2.1. Mie Scatterers

Generally speaking, single scattering of light from a dielectric object with arbitrary shape is an
exercise by itself. In line with a desire for simplicity it seems beneficial to limit oneself to spherical,
so-called Mie particles. As the Mie solution is about the only problem that can be solved exactly it
is always the first model treated in detail in text books on light scattering [42]. In Fig. 2 we show
the scattering cross-section obtained from the Mie solution for a sphere with index of refraction
m =

√
ε = 2.7 and a size comparable to the wave length as a function of the frequency. It can be

concluded that Mie scattering is full of resonances. The Mie solution is a complicated infinite sum
of Bessel functions of the Hertz potentials. Part of the complicated behavior can be appreciated by
the large number of resonances in Fig. 2. For two Mie particles already the solution is no longer
available in any practical form and one must fall back on a time-consuming numerical integration
of Maxwell’s equations [43].
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FIG. 2. Dimensionless quality factor of a dielectric sphere, defined as the total cross-section divided by the geometric cross-section,

Q ≡ σ/πa2, as a function of the size parameter x ≡ ωa/c0. The index of refraction of the sphere is m = 2.7.

The Mie solution can only be used for multiple scattering purposes after some tremendous simpli-
fications have been carried out: ISA (see introduction), far-field approximation [17], and diffusion
approximation. Even in that case keeping track of all polarization indices is complicated [44] [45].

3.2.2. Point Scatterers

The simplest scatterer one can possibly imagine is a point scatterer. We will now give an educa-
tional derivation of the properties of such a scatterer in three dimensions. We will extensively use
the bra and ket notation known in quantum mechanics also for classical waves.
In quantum mechanics a point scatterer, labelled by the index i and located at position ri, is

characterized by the local potential Vi(r, r
′) = 〈r′|Vi |r〉 = V0uδ(r− ri)δ (r− r′), where V0 is a

coupling strength with the same dimension as the energy (in our reduced units this is the dimension
of an inverse length squared) and u a volume whose role will become clear later. Scattering theory
tells us that a plane wave |k〉 incident with wave number (momentum) k and energy E = k2 on a
target is distorted according to,∣∣∣Ψ+

k

〉
= [1 +G0(E) Ti(E)] |k〉 . (3.11)

In terms of the interacting potential, the T -operator or T -matrix is given by the Born series,

Ti(E) = Vi + ViG0(E)Vi + ViG0(E)ViG0(E)Vi + · · · . (3.12)

Here G0(E) = (E+iε−H0)
−1 is the free Green’s function (operator). It is the formal representation

of a spherical wave emitted by the scatterer. A subtle infinitesimally small ε is used so that complex
analysis can be used. The fact that ε is positive takes care that the spherical wave propagates
outwardly and not inwardly. Substitution of Eq. (3.12) into Eq. (3.11) makes clear that the total
wave is built up from multiple scattering from the potential combined with free propagation in
between.
The Dirac delta-function of the zero-range potential allows us again to find the T -matrix as a

simple geometric series when taking matrix elements. Most calculations are easiest when calculating
matrix elements in the momentum representation, but they can always be transformed back to real
space. We find,

〈p| Ti(E) |p
′〉 = t (E) exp [−i(p− p′)·ri] ,
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t(E) =
V0u

1− V0u
∑
pG0(E,p)

, (3.13)

in which the diagonal matrix element

〈p|G0(E) |p
′〉 ≡ G0(E,p)δ (p− p′) = (E2 − p2 + iε)−1δ (p− p′) .

In real space the T -matrix takes the form

Ti (r1, r2, E) = t (E) δ (r1 − ri) δ (r2 − ri) , (3.14)

which demonstrates clearly the extreme simplification obtained by using point scatterers. Only
exactly at the position of the scatterer will a scattering event take place.
Expression (3.12) has been obtained for electrons but may be translated to light scattering. To

this end we must replace the free Hamiltonian and the energy by

H0 → p2∆p and E → (ω/c0)
2 ,

and introduce an energy-dependent potential. Polarization indices can be added to account for the
vector character of light. As a result, both the t-matrix and the Green’s function become second-
rank tensors. In what follows we will evaluate the expression for the t-matrix (3.13) explicitly for
electrons and light.
a. Electrons Let us first investigate the point scatterer for De Broglie waves, keeping the

interaction of a conduction electron with a defect in the solid state in mind. Since G0(E, p) =
(E + iε − p2)−1 we rapidly conclude that the momentum summation

∑
pG0(E,p) in Eq. (3.13) is

infinite in three dimensions. We can improve on this by writing2

∑
p

G0(E,p) =
∑
p

[
1

E − p2
+

1

p2

]
−
∑
p

1

p2
, (3.15)

where the divergent part has been separated. The first integral is elementary and yields i
√
E/4π if

E ≥ 0. The second term may be regularized by introducing a positive, energy-independent variable
Λ that acts as a cut-off. The divergence signifies that a normal point potential does not scatter. We
must therefore introduce a physical size a of the target. The cut-off Λ is chosen to be the inverse of
the smallest length scale a in our problem: Λ ≡ a−1. It is consistent to take for the not yet specified
volume u , u ≡ a3. With the cut-off procedure we can substitute ( 3.15) into (3.13) and find

t(E) =
[
a−1

(
1

V0a2
− 1

)
+
i

4π

√
E

]−1

. (3.16)

The variable a−1 (1/V0a
2 − 1) is a finite quantity which depends only on the scattering potential.

We shall denote it by −1/4πf . We wind up with,

2We are indebted to Dr. Theo Nieuwenhuizen for bringing this simple derivation to out attention. The

derivation agrees with the formal boundary value treatment in Ref. [46].
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t(E) =
−4π

1/f − i
√
E

. (3.17)

This model is known as the Fermi interaction, and was very popular in the early days of nuclear
physics. The real-valued parameter f is called the scattering length, and can be positive or nega-
tive. The final result we obtained in Eq. (3.17) coincides with mathematical (boundary condition)
treatments [46]. The good news is that point scattering exists, the bad news is that this model
cannot be used to describe resonant scattering of electrons as there is no resonance at any finite
energy E.
b. Light In the case of light most operators become tensors of rank two. The light potential

is Vi (ω, r
′, r) = −γu (ω/c0)

2 δ(r− ri)δ (r− r′) . Recalling (2.8) we identify γ as the polarizability
density of the matter which the scatterer is made of; u is again a volume. With the notation of
section II we have,

∑
p

G0(ω,p) =
∑
p

1

(ω/c0)
2 + iε− p2∆p

=
∑
p

[
p̂p̂

(ω/c0)
2 +

∆p

(ω/c0)
2 + iε− p2

]
, (3.18)

consisting of a longitudinal part with projector p̂p̂ and a transverse part with projector ∆p orthog-
onal to it, as defined in Eq. (2.5). The latter describes the travelling wave solutions of Maxwell’s
equations. The longitudinal part is an electrostatic part and does not propagate. It is divergent
but we can regularize with a momentum cut-off such that

∑
p p̂p̂ → 1/3 u−1I. The one-third is

recognized as the “depolarization factor” of a sphere and shows up here in the scattering amplitude
from the angular integral of the longitudinal projector. The second term on the rhs. of (3.18) is also
diverging but can be cut off with a positive parameter Λ as we did for the Fermi pseudo potential,
with an additional factor of 2/3 from the angular average of ∆p. We obtain [47]

t(ω) = −

[(
1

γ
+

1

3

)
1

u (ω/c0)
2 − Λ−

iω

6πc0

]−1

I . (3.19)

We observe that the longitudinal singularity - responsible for the factor 1/3 - can be absorbed
into a modified polarizability. In physical language this implies that the polarizability of the sphere
as a whole is different from its local value γu. Indeed, electrostatics [35] (or equivalently the exact
Mie solution at low frequencies [42]) shows that the polarizability of a sphere is not γu but rather

γsphu ≡ αsph = 3
ε− 1

ε+ 2
u , (3.20)

coinciding with our cut off procedure. The difference between local and total polarization arises
from depolarization charges on the boundary of the sphere. It is a genuine vector effect, absent in
a scalar model for light.
The transverse singularity Λ does not have the same frequency dependence as the interaction part

1/ (ω/c0)
2 αsph. Therefore the influence of the cut-off cannot be simply replaced by a frequency-

independent scattering length. In more mathematical language this means that the point scatterer
for light is not renormalizable in the normal Hilbert space of square-integrable wave-functions. [48].
Introducing the length scale Γ as 4πΓ ≡ 1/Λ we shall write the final result in the form,

t(ω) =
−4πΓω2

ω2
0 − ω2 − (2/3) iΓω3/c0

I , (3.21)
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in which ω2
0 ≡ 4πΓc20/αsph. An important conclusion that can be drawn is that the simplest model

of dielectric light scattering, contrary to the one of electron scattering, necessarily has a resonance.
The t-matrix in Eq. (3.21) cannot be a solution of Schrödinger’s equation. The solution has a strong
resemblance to the polarizability (3.6) of the radiating dipole with eigenfrequency ω0 discussed in
the previous subsection. The scattering amplitude (3.21) can be reproduced with mathematical
boundary-condition treatments [48] [49].
Adding the two delta-functions as in Eq. (3.14) gives the dipole a position in space, which will

make it possible to apply it to multiple scattering. The width of the resonance, equal to Γω2
0/3c0,

plays the role of 1/T2 when comparing to Eq. (3.6 ). Further inspection of the solution for the
driven atomic oscillator in Eq. (3.6), letting q = e, shows that the value for Γ appropriate for the
oscillator is Γ ≈ e2/mec

2
0 ≡ r0, a quantity referred to as the classical electron radius. Since Γ ∼ 1/Λ,

the appropriate inverse momentum cut-off in Eq. (3.19) thus turns out to be the classical electron
radius. This is the only length scale in our problem that can be constructed from classical natural
constants. For this reason the Bohr radius of the atom disqualifies.
The scattering cross-section defines the scattered flux by the object relative to the incoming flux

density (which is per unit of area). To find the scattering cross-section it is convenient - though by
no means necessary since the scattered flux does not depend on the distance from the scatterer - to
write the scattered wave (3.11) in the far field. It is customary to distinguish between the scattered
electric field perpendicular (r) to and within (l) the plane of scattering spanned by incoming and
outgoing wave vectors. For a plane light wave with wave vector k = ωẑ/c0 along the z-direction ,

Ψin (k, r) →

(
El,in

Er,in

)
eikz ,

the electric field (3.11) far away from the scattering obstacle takes the form(
E+

l

E+
r

)
=

(
El,in

Er,in

)
eikz +

(
cos θ 0
0 1

)
·

(
El,in

Er,in

)
t (ω)

eikr

−4πr
. (3.22)

The differential scattering cross-section, summed over polarization and averaged over the azimuthal
angle φ of the incident polarization vector (giving a factor of 1/2) then becomes

dσscat(ω)

dΩ
=

1

2
×

1

4π
|t(ω)|2 ×

(
1 + cos2 θ

)
.

The total scattering cross-section is found by integrating over dθ sin θ,

σscat(ω) =
|t (ω) |2

6π
. (3.23)

In Fig. 3 we have plotted the scattering cross-section of a point scatterer as a function of the
frequency ω of the incoming field. Compared to the Mie solution for a finite sphere one observes
that only one resonant frequency of the Mie sphere has survived.
Two other differences with Mie scattering can be mentioned that cannot be inferred from the plot.

In general a Mie sphere scatters the light rather anisotropically. The phase function, which is the
angular distribution of the scattered light intensity, of our point scatterer follows from

dσscat(ω)

dΩ
= σscat(ω)× Φ (θ)⇒ Φ (θ) =

3

4

(
1 + cos2 θ

)
, (3.24)

and is a purely geometrical factor arising from the mutual direction of the polarization vectors. For
the Fermi point interaction in quantum mechanics this distribution is isotropic.
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FIG. 3. Dimensionless quality factor of a classical oscillator (equivalent to a point scatterer) with an internal resonance at ω0 as

a function of frequency. The damping of the oscillation is T2 = 10/ω0. The quality factor is defined as the total cross-section divided by

the “geometric (Thomson) cross-section” of a free electron, Q ≡ σ/πr20 , where r0 is the classical radius of the electron. Due to resonant

scattering the cross-section of the harmonically bound oscillator can exceed the one of a free charge by orders of magnitude. Hence Q

can exceed unity by orders of magnitude, contrary to the quality factor of the dielectric sphere.

The second difference with a Mie particle concerns the scattered field near the particle. Given
an incident electric field e

(j)
in |k〉, where e

(j)
in is the polarization vector of the incoming plane wave

associated with polarization j, the field radiated by the point particle is the one of a radiating
dipole. By using R ≡ r−ri we can drop the superscript i on the matrix elements of the T -matrix in
the momentum representation. According to the Lippmann-Schwinger equation (3.11) the outgoing
wave becomes,〈

r |E+
k,j

〉
= E+

k,j (r) = {I exp (ik · r) + t(ω) G0 (ω, r− ri)} · e
(j)
in , (3.25)

in which ω = |k| c0 and,

G0 (ω,R) =
eikR

−4πR

{[
I− R̂R̂

]
−

(
1

ikR
+

1

(kR)2

) [
I− 3 R̂R̂

]}
.

In Mie scattering the near field is much more complex. Anisotropy and near field effects are both
very difficult to deal with in multiple scattering, but do not always lead to fundamentally new
physics. For that reason the point dipole derived in this section is of high value to investigate the
multiple scattering regime.
Having solved the light scattering from a point particle completely, we can make our first attempt

to trace back the material degrees of freedom. In general, the local polarization density P (ω, r)
induced by the eigenfunction (3.25) is given by,

P (ω, r) = [ε (r)− 1]E+
k,j (r) ≡ −

V (ω, r)

(ω/c0)
2 E

+
k,j (r) , (3.26)

which we have again written in terms of the frequency-dependent potential V (ω, r). Inserting the
electric field scattered by particle i, as given by Eq. (3.11) we obtain,

Pi (ω, r) = −
c20
ω2

〈
r |Vi(ω)| E

+
k,j

〉
= −

c20
ω2

〈
r | Ti (ω)|E

in
k,j

〉
= −

c20
ω2

∑
p

eip·r Tpk (ω) · e
(j)
in (3.27)
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For the point particle we arrive at,

Pi (ω, r) = −δ (r− ri)
t (ω)

(ω/c0)
2 · E

in
k,j (ri) (3.28)

This implies that the polarizability of the scatterer is given by

α (ω) = −t(ω)
c20
ω2
. (3.29)

This agrees with the material treatment given in the previous section.
c. Optical Theorem Does the point scatterer obtained in Eq. (3.21) scatter light elastically?

We could not really obtain this information from our phenomenological model because we needed
the equations for the light. But within the framework of our scattering theory we can answer this
question. Conservation of energy puts severe constraints on the scattering amplitude by means
of the unitarity of the S-matrix. The identity that guarantees conservation of energy for light or
probability for electrons is called the Optical Theorem. For light it takes the form [50],

−
Im Tjkjk(ω)

ω/c0
=
∑
j′

∫
dk̂′
|Tjkj′k′ (ω)|

2

(4π)2 . (3.30)

Here Tjkj′k′ (ω) is the scattering amplitude for scattering from direction k and polarization j into
direction k′ and polarization j′. Transversality allows two orthogonal polarization states of the light
in the far field for each wave vector on the energy shell |k| = ω/c0 (three polarization states are
nevertheless possible in the near field!). The right hand side of Eq. (3.30) is the total scattering
cross-section of the object or, equivalently, the total current associated with the scattered wave.
The left hand side is called the extinction cross section, and refers to the current captured by the
object.
For the point scatterer derived in Eq. (3.21) the far-field scattering amplitude is

Tjkj′k′ (ω) = t(ω) e
(j)(k)∗ · e(j′)(k′) , (3.31)

so that the Optical Theorem simplifies to,

−
Im t(ω)

ω/c0
=
|t(ω)|2

6π
. (3.32)

The general form of the t-matrix that obeys this identity is t (ω) = −4π/ [1/F (ω)− 2iω/3c0], in
which F (ω) is a real-valued, frequency dependent scattering strength, sometimes referred to as the
optical potential in view of the Fermi model (3.17). Our point scatterer is of this form when the
polarizability is real-valued. In that case the point object scatters the light elastically.
In the previous section we have indicated how to extend the treatment towards cases in which

part of the extinction is due to absorption rather than to scattering. In the present treatment this
amounts to adding to F (ω) a negative imaginary part. In that case the lhs. of the Optical Theorem
exceeds the rhs. This gives the same inequality as derived in Eq. (3.10).

3.2.3. Time Delay and Near Field

One might suppose that the differential scattering cross-section characterizes a scattering process
completely. Indeed for many applications this statement is true. Source and detector are often far
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separated from the target and experimentalists are not interested in what is happening near or even
inside the particle. All that one measures is the light or the electron that is analyzed in the far
field. In the case of De Broglie waves one often goes sometimes one step further by (erroneously)
stating that it is even unphysical to pose questions concerning processes occurring in near field.
One might put forward that in multiple scattering the particles are not infinitely far separated

from each other and that the near field becomes relevant. However, if the scattering mean free
path - the average distance between two collisions - is much larger than the wavelength, a condition
usually fulfilled, the far-field approximation suffices, even for multiple scattering. On the basis of
this reasoning one would expect that near-field and fields inside the scatterer hardly ever matter.
As soon as one starts asking questions regarding the dynamics of the propagation the situation

turns out to become entirely different. The most important dynamical scattering properties are the
rigorously defined delay time and dwell time. The delay time can be interpreted as the duration
of the scattering process. The dwell time can be interpreted as the time the wave spends in the
potential region (We assume the potential to have finite support. This may be unrealistic for
electron scattering but is always true for light). Delay can be anticipated to occur only inside the
object since far outside the motion is again free. Hence, both time scales may be anticipated to be
roughly equal. Time delay is a characteristic property of resonant scattering. In what follows we
shall demonstrate that the field inside the objects indeed plays a crucial role. We will point out that
by studying dynamical aspects of light scattering one recover many traces of the material degrees
of freedom that have been integrated out earlier.

a. Time Delay of Electrons Most of the knowledge of time delay has been developed in
quantum mechanics. The delay time was first introduced by E.P. Wigner in 1946 [51]. If Φ(E,Ω) is
the quantum mechanical phase shift of the scattered wave (read t-matrix) for some channel Ω, the
time-scale

τφ(E,Ω) = h̄
dΦ(E,Ω)

dE
, (3.33)

is called the Wigner phase-delay time for the channel Ω. Wigner demonstrated that this quantum-
mechanical definition coincides well with what would classically be called the time delay of an
incident particle with energy E. A great contribution of Wigner was his observation that τφ(E)
can be very large if a quantum-mechanical scattering resonance occurs. It is generally a positive
quantity, but can also be negative for repulsive interactions. This would correspond to a time
advance rather then a delay, but this advance is bound by a lower causality limit related to the
extent of the scattering region [52].
Later work by Jauch et al. [53] and Martin [54] established a physically more transparent but

mathematically equivalent expression for the phase delay time in terms of the exact continuum
eigenfunction Ψ+

E(r),

τφ(E) =
1

σscat(E)v

∫
d3r

[∣∣∣Ψ+
E (r)

∣∣∣2 − 1
]
, (3.34)

σscat(E) being the scattering cross-section and v the velocity of the incident particle. The delay
time has now been averaged over angles, which can be done if we don’t care in what direction the
scattered wave will finally go. We have divided by the dimensionless number σscatk

2/π in order to get
the delay time per open scattering channel. In words, the space integral of the excess accumulated
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probability density around the scatterer is equal to the average time-delay the scattering particle will
finally undergo. Since for an electron the local probability density is proportional to the local charge
density, the right hand side of Eq. (3.34) can be identified as the total “screened charge” around the
scattering potential. Work by Friedel [55] in the sixties demonstrated the vital importance of this
notion for electron-impurity scattering in the solid state, namely the existence and modification of
the Fermi level EF in the presence of impurities.
From the point of view of scattering theory Eq. (3.34) is surprising since a dynamic scattering

property, the delay time, is related to a stationary eigenfunction. Nevertheless, a prize has to be
paid: We need this eigenfunction everywhere, not only in the far field. This suggests that “near
field” (off-shell) and “dynamics” must have a lot in common. The value of this conclusion cannot
be underestimated. It plays a key role in the present paper.
Eq. (3.34) can be understood heuristically. The total excess probability of finding the particle

near the scatterer is given by the integral on its right hand side. The rate with which this excess
probability is carried away is the total current through a closed surface encompassing the scatterer
and given by σscatv. The delay is then typically given by the ratio of excess probability and current.
This reproduces the formal scattering result.
We will use Eq. (3.34) to define the “‘dwell time” in three dimensions as

τd(E) ≡
1

σscat(E)v

∫
S
d3r

∣∣∣Ψ+
E (r)

∣∣∣2 . (3.35)

This definition generalizes the one known in one dimension [56] [57]. The difference between
Eq. (3.34), describing the phase delay time, and the definition for the dwell time is that in the
latter case the integral extends only over the scatterer region S and the contribution of the incident
plane wave is no longer subtracted. By construction the dwell time is a property of the quantum
mechanical field inside the scattering object only. Quite recently both dwell and delay time have
been given renewed attention in the context of one-dimensional quantum tunneling [58].
The Wigner phase-delay time for quantum mechanical scattering in three dimensions, averaged

over outgoing channels, can be expressed in terms of the t-matrix. In principle this follows by in-
serting the eigenfunction defined in Eq. (3.11) into Eq. (3.34). The algebra is tedious but straight-
forward. One obtains [59],

∫
d3r

[∣∣∣Ψ+
E (r)

∣∣∣2 − 1
]
= −

d

dE
Re Tkk(E) + 2

√
E
∫

dΩk′
dσ

dΩ

∂Φ(E,Ω)

∂E
. (3.36)

Here Tkk′ (E) is the scattering amplitude for scattering from k to k′ at energy E = k2; dσ/dΩ =
|Tkk′ (E)|

2 / (4π)2 is the associated differential scattering cross-section. In view of relation (3.33)
the first term on the rhs. may look unexpected. It describes the phase-delay in the forward
scattering channel. This channel always plays a subtle role in scattering theory since this channel
does not give rise to real scattering. In fact this channel is to be associated with the coherent
beam mentioned earlier. One of the “beauties” of scattering theory is that energy dependence of
the far-field amplitude, the rhs. of Eq. (3.36), provides knowledge of what is going on near the
scattering obstacle, the lhs. of Eq. (3.36).
b. Time Delay of Light Most formulae for electrons allow a straightforward mathematical

translation for light. Eq. (3.35) for the dwell time becomes for light with frequency ω in a dielectric
region S,
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τd(ω) =
W (ω, S)

σscat(ω)c0
=

1

σscat(ω)c0

∫
S
d3r W (ω, r) . (3.37)

We recall that units have been chosen such that the energy density of a plane wave in vacuum is
normalized to unity. W (ω, S) is the electromagnetic energy inside S at frequency ω. It can be
calculated straightforwardly from the Mie solution [60].
Fig. 4 shows the outcome of a computation for Mie spheres with radius a and index of refraction
m = 2.73 (corresponding to the value for titanium-dioxide, a material often used in laboratory
experiments). Near a resonant frequency both energy density and scattering cross-section become
large. Contrary to the cross-section, the accumulated energy density is not subject to a unitary
maximum and can be very large. In particular, near the size parameter x ≡ ωa/c0 = 4.59 we find
W ≈ 2500 4

3
πa3 and σ ≈ 3.9 πa2. This results in a dwell time as large as 850 a/c0. For particles with

a size of 220 nm this corresponds to the time that light needs to propagate 190 µm in vacuum. This
is roughly 5 times larger than optically thick samples that are used to study multiple scattering of
visible light!
Let us investigate the dwell time τd(ω). The electromagnetic energy density is given by Eq. (2.12).

Let us adopt for simplicity “equipartition” between electric and magnetic energy (this can be demon-
strated in a stationary situation). We then obtain,

W (ω, S) =
∫
S
d3r ε (r)

∣∣∣E+
k,j (r)

∣∣∣2 =
∫
S
d3r

∣∣∣E+
k,j (r)

∣∣∣ 2 +
∫
S
d3r [ε (r)− 1 ]

∣∣∣E+
k,j (r)

∣∣∣2
≡ Wrad(ω, S) +Wpot(ω, S) . (3.38)

The first term of the right hand side of Eq. (3.38) is analogous to the probability inside S for
quantum waves and may here be called the radiation energy. The second term seems to be an
extra contribution for light. The dielectric constant defines the local polarization density according
to P (r) = [ε (r)− 1 ]E (r) so that this contribution can be identified as the integral of the total
potential energy density E ·P stored in the dielectric object. This partitioning has been effected in
Eq. (3.38). In our scattering theory, the potential energy represents the material degrees of freedom.
If the dielectric constant of the object is much larger than the vacuum value, the potential energy
part dominates completely. As a result, the time that the light spends in the dielectric scatterer is
essentially the time it takes to store the potential energy. Note the surprising observation that this
argument is apparently not valid for quantum mechanical potential scattering! In section IV.C.2 we
will infer that the contribution of longitudinal electric fields in the “radiation energy” (also absent
for De Broglie waves) should also be considered as a material contribution. The longitudinal field
arises from polarization charges on the boundary of S. The real radiation energy is thus contained
in the transverse, propagating modes of the Maxwell equations. In the rest of the paper we will
frequently relate the dwell time to the matter energy only, and ignore the radiation energy inside
the scatterer.
We will find two alternative but equivalent ways to find the dwell time of light. The first one

establishes an interesting link with the “energy dependent” potential mentioned in section II. The
second method is phenomenological, very educational, and what is most important, extremely useful
for numerical calculations. Finally we will obtain explicit results for the point particles introduced
in section II.B.2.b.
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FIG. 4. Two important properties of a Mie sphere with radius a. Top: scattering cross-section σ, relative to its geometrical

cross-section πa2. Bottom: average electromagnetic energy density W inside the Mie sphere relative to vacuum. Both have been displayed

as a function of the size parameter x, defined as the x = ωa/c0. The index of refraction of the Mie sphere is m = 2.73, corresponding

to Titanium-dioxide in vacuum. In the graph of the cross-section we identified various geometrical resonances of the Mie sphere. The

spectroscopic notation EiI (MiI) refers to the ground tone of the electric (magnetic) resonance of the ith partial wave. Higher roman

number signify overtones as discussed by Stratton [61] .

b.1. Relation with Energy-dependent Potential Let us investigate how Eq. (3.36) changes
when we want to let it apply to light rather than electrons. In particular, what will change if an
energy dependent potential is introduced? If we forget the extra book keeping caused by polarization
indices we first notice that the energy dependence in the t-matrix due to energy dependence of the
interaction will give rise to extra terms on the right hand side. On the basis of Eq. ( 3.36) also the
left hand side is expected to be subject to an extra contribution due to stored energy. It seems likely
that modifications of left and right hand side will compensate so that the outlook of Eq. (3.36) will
remain the same. By writing the potential as V (r, E) = f(r)V0(E), and using the mathematical
identity,
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d

dE
=

(
∂

∂E

)
V

+
dV0

dE

(
∂

∂V0

)
E

, (3.39)

the extra terms on the rhs. of Eq. (3.36) generated by the energy dependent potential can easily
be identified as a derivative “with respect to potential” [62]. The former electronic terms that do
not contain derivatives with respect to the potential will cancel as a result of Eq. (3.36). The term
remaining on the left is W pot

ω (S). Recalling that E → ω2/c20 for light this suggests the validity of
the relation

Wpot(ω, S) =

{
−
∂

∂V0
Re Tkk(ω) + 2 (ω/c0)

∫
dΩk′

dσ

dΩ

∂Φ(ω,Ω)

∂V0

}
×

dV0

d (ω/c0)
2 , (3.40)

where on the right the terms are collected that contain the derivative with respect to the potential.
In view of relation (2.8) we can insert dV0/d (ω/c0)

2 = 1 for light. Eq. (3.40) can again be derived
straightforwardly from scattering theory but we will spare you the details [57] [63]. Polarization
indices can easily be added in this equation. In that case the longitudinal field energy will automat-
ically be incorporated in Wpot. We first demonstrated that the total excess electromagnetic energy
around the scatterer can be obtained from the on-shell scattering amplitude). We now have shown
that this also holds for the matter contribution to the electromagnetic energy, that is∫

d3r [W (ω, r)− 1] ∼
∂Φ(ω, V0)

∂ (ω/c0)
2 ,∫

d3r Wpot(ω, r) ∼
∂Φ(ω, V0)

∂V0
. (3.41)

It may come as a surprise that both near-field properties can be obtained separately from knowledge
of far field only.
Relation (3.40) establishes the desired connection between the concept of energy-dependent po-

tential and “stored energy”. Energy can be stored if and only if some degree of freedom has been
integrated out. Apparently, this is automatically the case when light scatters from dielectric media.
An explicit connection between such a degree of freedom will be established later for the point par-
ticle defined in Eq. (3.21) where Eq. (3.40) will allow us to calculate the potential energy easily. In
the fifties H. Feshbach demonstrated elegantly that integrating out a closed internal channel gives
rise to a potential that depends on energy [37]. Quite conveniently he referred to it as an “optical
potential” even when no light is involved at all. Optical potentials are common in nuclear physics
when intermediate particle states , with finite lifetime, are integrated out.

b.2. Relation with Absorption Using elementary arguments from geometrical optics one can
arrive at almost an exact solution for the dwell time. To this end consider Fig. 5. A plane wave is
incident on a relatively big particle with index of refraction m = η + iκ. In the particle this wave
can be represented by

Ψ(s, t) = exp [ikms− iωt] ,

where s is some hypothetical coordinate along the path of the wave. The amplitude decays expo-
nentially when the imaginary part of the index κ > 0. The amplitude of the wave that finally comes
out is

|Ψout|
2 = exp [−2κkL] .
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FIG. 5. The absorption picture in geometrical optics. It illustrates how an incident ray it scattered by a sphere. This picture

allow us to estimate the traversed path length of the wave in the scattering object from the amount of absorption that it has suffered.

Despite the simplistic derivation, this estimate turns out to give the exact solution for the dwell time of a scalar scatterer, and an accurate

expression for vector waves.

Here L is the path length of the wave in the particle. Since the speed of light inside is given by
c0/η, the residence time becomes τ = ηL/c0. Furthermore |Ψout|

2 can be identified as the albedo
a of the scattering particle, that is the ratio of scattering and extinction. The albedo represents
the deviation from the optical theorem (3.30) due to dissipation of energy inside the particle. This
yields for the dwell time of waves in a particle without absorption,

τ abs
d (ω) = lim

κ → 0

1− a (ω)

2ωκ
m . (3.42)

For scalar waves it can be proven rigorously that τabs
d is equal to the dwell time. Its formal

proof uses the Cauchy-Riemann equations for an analytic function [63] [64]. These equations tell
that differentiating the real part of an analytic function with respect to the imaginary part of its
argument is the same as differentiating the imaginary part of the function with respect to the real
part of its argument. Scattering theory shows the t-matrix to be analytic in the potential. In this
way the equivalence of relations (3.42) and (3.37) can be established.
In Fig. 6 we show absorption time, dwell time and Wigner delay time for a vector Mie sphere with

index of refraction m = 3.0. Numerically they all seem to be rather close. The fact that dwell and
absorption time are only approximately equal in the numerical computations above is a genuine
vector effect and due to the longitudinal fields inside the particles. The absorption argument is an
argument for travelling waves and does not address the longitudinally stored energy.

b.3. Application to Point Scatterers In this subsection we find explicit results for delay
properties of the point scatterer we developed in section III.B.2.b. Let us start by inserting the ex-
pression of the t-matrix into result (3.40) we obtained for the potential energy. For vector scattering
we simply add a summation over two orthogonal polarization channels in the scattering term. The
result is,

Wpot (ω) =
c40
αsph

·
(4πΓ)2

(ω2
0 − ω2)

2
+ (2Γω3/3c0)

2 . (3.43)

Here αsph is the polarizability of the point scatterer given by Eq. (3.20). Recalling the expression
for the total scattering cross-section (3.23), we find for the dwell time (which we calculate here only
from the potential energy),
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FIG. 6. Dwell time, Wigner time and absorption time obtained calculated for a Mie sphere with index of refraction 3.0. In the

resonant scattering regime they are all approximately equal. In the Rayleigh regime at low frequencies they deviate from each other, but

they all diverge towards infinity, and no longer seem to be reliable characteristic time scales.

τd (ω) =

(
2

3

αsph

4πc30
ω4

)−1

. (3.44)

For a very sharp resonance (Γω0/c0 � 1) the dwell time is roughly constant over the resonance.
This is a specific property of point particles and not true for scatterers with finite size such as Mie
spheres. The results of section III.B.2.b. show that ω2

0 = 4πΓc20/αsph. This implies that the dwell
time near the resonance in this model is simply the inverse frequency width of the resonance.
An interesting connection with atomic physics occurs by doing some formula manipulations. Let
W0(ω, j) being the density of states of the radiation per unit volume per polarization direction j at
frequency ω in vacuum, and found by summing the eigenvalues,

W0(ω, j) =
2ω

c20

∑
p

δ
(
(ω/c0)

2 − p2∆p
)
jj
=

ω2

3π2c30
. (3.45)

This expression will be given more attention later in section IV.C of this paper. The factor 2ω
originates from dω2 = 2ωdω. The inverse dwell time is expressed as

1

τd
=
π

2
αsphω

2W0(ω, j) . (3.46)

This is a purely classical expression. It reminds us that the dwell time is determined by the
polarizability αsph of the matter and the number of states available for the leaving waves.
We can now insert the quantum mechanical expressions for the atomic polarizability in terms of

the atomic dipole matrix element d: αsph/4π = 2 |d|2 /h̄ω [65], and the expectation value of the
electric field (along the direction i of the dipole moment) triggered by vacuum quantum fluctuations,

〈
E2

j(ω)
〉
=

1

2
h̄ω ×W0(ω, j) . (3.47)

This gives
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1

τd
=

2π

h̄2 |d|
2
〈
E2

j

〉
. (3.48)

This is readily recognized as the Fermi Golden Rule for the Einstein spontaneous emission coefficient.
We conclude that the dwell time and inverse spontaneous coefficient are mathematically identical
for this case. Physically, the spontaneous emission coefficient A can only be addressed in a matter
picture, with the excited state as initial state, and not an incoming laser beam. In the former
case the emitted light has a spread in frequency proportional to A due to uncertainty. In our light
picture there is only one frequency because the scattering process is purely elastic with conservation
of phase.
Quantum mechanics and h̄ play a spurious role in Eq. (3.48) since the derivation is classical. The

presence of h̄ reminds us here that the matter has a quantum description and that the perturbing
light originates from vacuum fluctuations. Recent work in quantum optics concentrates on the
modification of spontaneous emission in materials other than vacuum [66] [67] [68]. The change in
density of states in Eq. (3.46) then plays a leading role. This conclusion could have been drawn
using strictly classical considerations.

4. MULTIPLE SCATTERING OF LIGHT

The single scattering properties discussed in the previous section will now be used to investigate
multiple scattering. The medium that we envisage is a medium with typical size L containing a
large number of identical particles, located randomly. The degree of multiple scattering that occurs
in such a medium may be expected to be determined by the size of the medium relative to the
extinction mean free path of the waves,

τ ≡
L

�ext
= Lnσext . (4.1)

The second equality in relation (4.1) is based on the independent scattering approximation (ISA). In
optics and astrophysics the parameter τ is called the optical thickness. If τ � 1 multiple scattering
will be large, when τ � 1 multiple scattering will be small. On the basis of Eq. (4.1) one infers
that multiple scattering will be prominent when the density of the scattering particles is large and
when the scattering of the individual particles is strong. This conclusion seems to be physically
sound, but objections can be raised. First of all, one can imagine that for particles with large but
predominantly forward scattering, multiple scattering will not be very efficient. However, anisotropy
in scattering does not seem to play any role in the definition in (4.1). An additional complication,
that might show up for a very large density of scatterers, is the importance of “beyond-ISA” events,
like repeated scattering from one particle. In that case optimizing individual scattering may not
necessarily optimize collective scattering.
This section on multiple scattering is divided into six parts. First we pay attention to the averaging

procedure needed to describe random media. Next, we treat the average amplitude (or field) under
near-resonant scattering conditions and establish the link with polaritons. We will introduce the
density of states (DOS) and the spectral function for light. We will have to extend the quantum-
mechanical notion of these concepts. In the fourth part we deal with the transport of the average
intensity of light with a frequency near scattering resonances of the medium. We shall derive the
equation of radiative transfer, and point out how the average amplitude and average intensity are



A. Lagendijk, B.A. van Tiggelen/Physics Reports 270 (1996) 143-215 175

related. We shall prove the validity of an Einstein relation. In a separate section we briefly discuss
extensions of standard radiative transfer theory.

4.1. Averaging

Generally speaking, physicists immediately apply averaging procedures as soon as “disorder” is
introduced in their model [69] [70] . When the scattered intensity is averaged over some random
variable, a transport theory emerges. When workers start out with a transport theory, they often do
not realize that this theory was obtained after performing an average over the disorder. Standard
transport theory focuses both on the average field amplitude 〈〈Ψ〉〉 and on the average intensity
〈〈ΨΨ∗〉〉. With these first two moments of the field Ψ it is in principle impossible to reconstruct
the whole distribution of Ψ, and information will be lost. The big question is: do these two lowest
moments in practice suffice to describe the experiment? This question can be divided into two
parts:
• Does the experiment always deal with averaging and is it the same average as performed in

theory?
• Are higher moments expressible in lower moments and is their influence limited to a numerical

correction to known phenomena, or do these higher moments really provide new physical
insight?

Observation of speckle is an example where at least 〈〈ΨΨΨ∗Ψ∗〉〉 is necessary to interpret the
observations.
In some special circumstances the whole distribution function of some observable Φ, not necessarily

the field amplitude Ψ, is determined by the lowest moment 〈〈Φ〉〉. The Poisson distribution is a
well known example. Sometimes the distribution function has only one value for which it is non-
zero. The quantity Φ is then called “self-averaging” and the random process has in fact become
deterministic. Knowledge of the average then provides knowledge about “almost every” individual
realization of the random system. This property implies that the average value applies to every
single realization of the system except for a few special ones (with measure zero), among which
is the realization of purely crystalline structure. Propagation of waves in one dimensional random
systems (meaning that two out of three dimensions are translationally invariant and only the third is
random) embodies such a special case for which self-averaging can be demonstrated mathematically
[71] [72]. For a one-dimensional system one can prove that all eigenfunctions decay exponentially
in space for “almost any” energy or frequency for “almost any” realization of the disorder. The
decay length is a function of energy or frequency only, and not of the precise realization of the
system. In three dimensions, proofs of self-averaging are rare and in most cases quantities are not
self-averaging. One quantity for which self averaging has been demonstrated in three dimensions is
the integrated density of states of Schrödinger Hamiltonians [73].
For electron propagation in disordered metals the averaging is usually brought about in a natural

way by thermal fluctuations. Thermal fluctuations destroy the phase of the electronic wave function
and thereby kill all interference at length scales typically on the order of a micrometer. The
conductivity of copper is 6 × 107 (Ωm)−1 at room temperature and a normal copper wire has
a resistance of, let us say, 100 Ω. There are no large fluctuations of this resistance induced by
quantum interferences. Under these circumstances knowledge of the second moment 〈〈ΨΨ∗〉〉 alone
suffices.
In the eighties a new branch of condensed matter physics developed: mesoscopic physics. New

technological developments made it possible to manufacture very tiny samples. In such mesoscopic
samples the phase of the electronic wave function is not destroyed [74]. Yet, propagation of the
electron can be both in the ballistic (L� �) and in the opaque ( L� �) regime.
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In opaque mesoscopic systems the movement of one single defect can give rise to typical variations
of the conductance of order e2/h � (25.8 kΩ)−1. These fluctuations are known as the Universal
Conductance Fluctuations (UCF). They do not disappear when the medium is enlarged as long as
its size remains smaller than phase-destroying lengths caused mainly by electron-phonon coupling.
To explain conductivity measurements in mesoscopic systems one needs the whole distribution of the
conductance. In general correlations between physical processes cause a distribution to deviate from
a Gaussian or Poissonian statistics. These distributions functions apply when assumptions about
independence and decorrelation are made. For example, assumptions of this type lead to a Gaussian
distribution for the complex optical field amplitude in transmission and a Poisson distribution for
the intensity [75]. Deviations from these distributions functions are caused by correlations e.g.
originating from interference. For multiple light scattering such deviations are a topic of current
interest; They have indeed been predicted theoretically [76] and observed experimentally [77].
In experiments on optical structures with quenched disorder the averaging is not automatically

performed by thermal fluctuations. This lack of automatic averaging has both advantages and
disadvantages. The advantage of studying mesoscopic physics of light rather than of electrons
is that the former is experimentally easier and cheaper. To study electronic systems one needs
milliKelvin temperatures and nanometer samples. Interesting fluctuations in light intensity, referred
to as speckles, come almost for free! The drawback is that the magnitude of these optical intensity
fluctuations are of the same order as the intensity itself. Consequently, optical experimentalists
must average over some parameter - either over time or frequency, or over position (rotation or
translation) - of the sample in order to get rid of the large fluctuations. In the accompanying
theory one averages over all possible locations of the scattering objects. The question - actually the
first one posed earlier this section - whether experimental and theoretical averaging procedures are
equivalent is an unsolved one.

4.2. Scattering Theory for the Average Amplitude

Given the polarizability α (ω) of one individual oscillator, or dielectric particle, in vacuum at
frequency ω, the polarization density P of an ensemble of oscillators can be found by simply multi-
plying the single-oscillator polarization p with the number density n of the oscillators. In this way
the standard “textbook result” for the complex dielectric constant is obtained,

ε (ω) ≡ 1 +
P

E
= 1 + nα (ω) . (4.2)

Strong objections can be raised against such a phenomenological procedure. Insertion of this dielec-
tric constant into the macroscopic Maxwell’s equations shows that dynamic electric fields propagate,
and that their frequencies and wavelengths are related through the (complex) dispersion law

k2 = ε (ω)
ω2

c20
, (4.3)

referred to as the “Maxwell relation”. Yet, retardation effects between the different oscillators -
inherently connected to propagation - have been ignored completely in the simplistic derivation of
relation (4.2). In principle this standard derivation can only be justified for electrostatics (ω = 0).



A. Lagendijk, B.A. van Tiggelen/Physics Reports 270 (1996) 143-215 177

For the same reason the treatment of “local-field” concepts in some text books is hard to defend
at optical frequencies. In these approaches an oscillator “feels” a so-called local electric field, caused
by nearby oscillators, that is different from the macroscopic field, according to

Eloc = E+
P

3
. (4.4)

This local field polarizes the oscillator, p =αEloc, and inclusion of this local field leads to a polar-
ization density of P = nαEloc. Using Eq. (4.4) to eliminate P we find

Eloc =
1

1− 1
3
nα

E ≡ ϕlocE . (4.5)

The local field factor ϕloc describes the enhancement of the local field with respect to the macroscopic
field and is expressed in Eq. (4.5) in terms of microscopic polarizabilities. If we want to have ϕloc

expressed in terms of the, experimentally available, macroscopic dielectric constant this can be done
as Eq. (4.5) implies the following relation between the dielectric constant and the polarizability,

ε = 1 +
nα

1− 1
3
nα
, (4.6)

so that

ϕloc =
ε+ 2

3
. (4.7)

This expression is familiar in linear and even nonlinear optics [38] to relate microscopic polariz-
abilities to macroscopic fields. It works very good for gasses and surprisingly well for solids [78].
Relation (4.6) can be inverted into,

nα = 3
ε− 1

ε+ 2
. (4.8)

One can see that local-field corrections are at least second-order in the density and are thereby one
out of many other “beyond-ISA” modifications of the dielectric constant to be discussed later.
More advanced considerations [39] [79] (among which the original one given by Lorentz [80] !) do

take into account retardation effects. More or less surprisingly and after considerable effort, it turns
out that under mild conditions the static outcome indeed applies to finite frequency and Eqs. (4.4),
(4.5), (4.6), (4.7), and (4.8) remain valid. One just replaces α by α(ω) and ε by ε(ω). The explicit
consideration of retardation is not necessary. The dynamic version of Eq. (4.8) is known as the
Lorentz-Lorenz formula. We will investigate the validity of the Lorentz-Lorenz formula using the
modern formulation of multiple scattering theory. The fact that the oscillators can be replaced by
an effective medium with a dielectric constant given by the Lorentz-Lorenz formula is known as the
Ewald-Oseen extinction theorem. This is a theorem for the coherent wave.

4.2.1. Dyson’s Equation

We will first shortly illustrate the Green’s function formalism for an electron in a (random) po-
tential and then show how this framework will have to be modified to let it apply to light. The
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quantum-mechanical eigenfunctions of the Hamilton operator H are given by Hψi = Eiψi. In many
applications it is more convenient to have the inverse wave operator in which the eigenvalues of
the Hamiltonian show up as poles, and not the Hamiltonian. For this purpose one defines the
(amplitude) Green’s function operator G(z) [81],

G(z) ≡
1

z −H
. (4.9)

One can take matrix elements of this operator. Both the r and the p-representation are relevant.
The matrix element G (z, r, r′) ≡ 〈r |G(z)| r′〉 describes the propagation of the electron from r to
r′. The average propagation is determined by the average of the Green’s function over all possible
realizations. This averaging restores translational symmetry, so that momentum is a conserved
quantity. In real space this implies 〈〈 G (z, r, r′) 〉〉 = 〈〈 G (z, r− r′, 0) 〉〉 ≡ G(z, r − r′). It is
convenient to take matrix-elements in the p -representation,

〈〈 〈p| G (z) |p′〉 〉〉 ≡ G (z,p) δ (p− p′) . (4.10)

We define a self energy (sometimes called mass operator due to its role in quantum field theory)
Σ (z,p) according to,

G (z,p) ≡
1

z−p2 − Σ(z,p)
. (4.11)

Definition (4.11) is known as Dyson’s equation. All information has been hidden in the new object
Σ (z,p) , the self-energy. For free motion the self-energy obviously vanishes. As the Dyson equation
is exact, the exact calculation of Σ (z,p) remains as difficult as the exact calculation of G (z,p).
However, it is often much easier to obtain reliable approximations for Σ (z,p) than for G (z,p) .
Diagrammatic perturbation theory can be developed and it turns out that the self energy is deter-
mined by only a limited set of diagrams, that are characterized by a special “connected” structure
[70] [82].
Let us now find the analogous quantities for the propagation of light. The vector Green’s function

has to work on three-dimensional vector fields and is therefore a tensor operator of rank two. We
still call it the “vector” Green’s function,

G(ω) =
1

ε (x) (ω/c0)2 −F(p)
, (4.12)

where we regard ε (x) as the operator with real-space matrix element 〈r| ε (x) |r′〉 = ε (r) δ (r− r′),
as is done in quantum mechanics. We have defined the operator F(p)

F(p) = p2 − pp . (4.13)

The Green’s function (4.12) is intimately related to Huygens’ principle (stating that the propagation
of light is a subsequent sum of spherical waves) and it is referred to as the amplitude Green’s function.
However, it is not the Green’s function that one would expect to show up here when comparing
with the electron case. To emphasize this point we introduce the frequency eigenfunctions of the
Helmholtz equation {|Ei〉} ,
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ε (x)−1 ·F(p) · | Ei〉 = (ωi/c0)
2 |Ei〉

or : ε (x)−1/2 ·F(p) · ε (x)−1/2 ·
{
ε (x)1/2 · | Ei〉

}
= (ωi/c0)

2
{
ε (x)1/2 · |Ei〉

}
(4.14)

We arranged the operators ε (x) such that we obtain an Hermitean Green’s operator. This vector
eigenvalue equation calls for another vector Green’s function namely,

G̃(ω) ≡
1

(ω/c0)2 − ε (x)−1/2 ·F(p) · ε (x)−1/2
= ε (x)1/2 ·

1

ε (x) (ω/c0)2 −F(p)
· ε (x)1/2

= ε (x)1/2 ·G(ω) · ε (x)1/2
, (4.15)

By construction, a number of mathematical properties holding for the electronic G(E) also hold
for G̃(ω). However, in most physical applications the average amplitude Green’s function G(ω)
shows up because this one describes the electrical field propagating from one place to another. The
difference between the two is the sandwiching by ε (x)1/2. One should realize that ε (x) is in fact
a random variable. Consequently the average of G̃ is more complicated than the one of G. This
section is devoted to the average of the amplitude Green’s function G.
The formulation of a Dyson equation for the Green’s function G is equivalent to the electron case,

only changing scalar operators into tensors of rank two. As with electrons we define a (vector) self
energy Σ (ω,p) according to,

G (ω,p) ≡
1

(ω/c0)2 −Σ (ω,p)− p2∆p
. (4.16)

We have used 〈p|F |p′〉 = p2∆pδ(p− p′) as in definition (2.4).
The vector self-energy is intimately related to the dielectric function ε (ω,p) . The definition of

the dielectric function of the medium is,

ε (ω,p) ≡ 1−
Σ (ω,p)

(ω/c0)2
. (4.17)

In isotropic media all tensor operators can be decomposed into a fully transverse and a fully lon-
gitudinal component: in the p− representation we divide the identity operator into I = p̂p̂ +∆p.
We can pursue this decomposition for the dielectric function,

ε (ω,p) = ε‖ (ω,p) p̂p̂+ ε⊥ (ω,p)∆p, (4.18)

so that for the Green’s function,

G (ω,p) =
p̂p̂

ε‖ (ω,p) (ω/c0)2
+

∆p
ε⊥ (ω,p) (ω/c0)2 − p2

. (4.19)

The (complex) poles of the Green’s function G (ω,p) determine the excitations of the system.
The real part of the poles determine the frequency of the excitations and the imaginary part
represents their damping. For transverse excitations we obtain the complex dispersion law
K2 = ε⊥ (ω,K) (ω/c0)

2 , which is similar to Eq. (4.3). Longitudinal excitations, if any, satisfy
ε‖ (ω,K) = 0. If the dielectric function is p−independent, both longitudinal and transverse di-
electric constant are equal and written as the dielectric constant ε (ω). Momentum dependence of
ε (ω,p) - usually called spatial dispersion [83] [84] - can be induced by cluster scattering or by spatial
correlations of the scatterers, both being beyond the independent scattering approximation (ISA).
In the ISA spatial dispersion can be due to the finiteness of the scatterers. For point scatterers or
atoms spatial dispersion is absent in the ISA.
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The ISA includes all multiple scattering up to infinite order, but ignores any form of recurrent
scattering between different particles. The ISA is widely used, often without any justification. The
precise nature of the ISA can be readily appreciated when examining the approximation that has
to be made to the self energy in order to produce the ISA. The ISA self-energy is just given by the
product of the scattering contribution of one particle and the density of scatterers,

Σ(1) (ω,p) = nTpp (ω) . (4.20)

This formula shows nicely that scattering from one particle has become a “building block” for
the average amplitude. Since recurrent scattering from clusters is going to be higher order in
particle density, one expects that the ISA is the first term in a density expansion (we skip questions
concerning convergence and analyticity of such an expansion). Inserting (4.20) into (4.17) gives the
ISA expression for the dielectric function.

ε (ω,p)−→I−
nTpp (ω)

(ω/c0)2
. (4.21)

For isotropic scatterers is Tpp (ω) = Tpp(ω)I so that the dielectric function satisfies ε‖ (ω,p) =
ε⊥ (ω,p). For isotropic point particles we have a second simplification namely Tpp (ω) = t(ω) I .
For the polarizability of the medium this implies

α(ω) =
1− ε(ω)

(ω/c0)2
= −

nt(ω)

(ω/c0)2
. (4.22)

(See also the discussion following Eq. (3.28)). Hence we recover relation (4.2), at least for point
particles. This proves the validity of relation (4.2) even in the case of retardation effects. The
local-field correction is higher-order in density and strictly speaking beyond ISA.
The wave number following from K2 = ε (ω) (ω/c0)

2 has in general a real and imaginary part. The
optical theorem (3.30) shows that the imaginary part must be positive. This is found in many other
cases and is a manifestation of the dissipation-fluctuation theorem [85]. Hence the imaginary part of
K gives rise to a decay of the propagating modes. We stress here already a feature - which cannot be
addressed by considering the average field only - that this decay cannot be due to (only) absorption
but is due to scattering out of the forward direction. Decay and propagation are characterized by

the complex index of refraction m (ω) ≡
√
ε (ω) = Kc0/ω ≡ (k + ik′′)c0/ω. Phase velocity and

scattering mean free path can be defined as already announced in relation (1.1). In real space the
average electric field of a transverse excitation takes the form,

〈〈 E 〉〉 = e(1,2) exp(−iωt) exp

(
i
ω

vp

r −
r

2�ext

)
. (4.23)

being the solution of the wave equation with complex index of refraction m(ω).

4.2.2. Polaritons

More insight into the consequences of the dispersion relation (1.1) can be obtained when we use the
t-matrix of a point dipole. We have shown that point dipoles necessarily have a frequency resonance,
and that this resonance will influence the dielectric function and the index of refraction. The
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resulting resonant behavior of the index of refraction gives rise to a rather complicated dispersion
law, an S-curve, that is called polariton behavior. Polaritons come in many forms. An important
characteristic property is how much of the incoming flux the point dipole will scatter, and how much
it absorbs. We have introduced earlier the concept of albedo a to characterize the relative importance
of scattering and absorption. To describe the point scatterer we can use both the phenomenological
dielectric constant with a variable T2 in Eq. (3.3) and the fundamental microscopic t-matrix (with
has a = 1) . As explained earlier in this paper polaritons exist with albedo’s ranging from close to
one down to 10−6 .
We will illustrate polariton behavior by using the conventional notation as much as possible. Up

to now we have described ε(ω) arising from only one type of point scatterer. In general there may be
several types of scatterers in a medium, with resonances at different frequencies. If one remains with
the frequency of the incoming light in the neighborhood of one particular resonance, well separated
from the others, we can adapt our formalism without difficulty to include this situation. If only one
type of resonance is present the dielectric function at frequencies higher than this resonance will be
1 . However in a real situation there could still be resonances at much higher frequencies from which
there is still a static contribution. We deal with this by generalizing this into ε(ω =∞) ≡ ε∞ ≥ 1.
It is conventional to define the dimensionless quantity S ,

S ≡ ε(ω = 0)− ε∞ ≡ εlow − ε∞ . (4.24)

For point dipoles we identify

S = 4πn
Γ

(ω0/c0)
2 , (4.25)

so that the dielectric constant is now given by

ε (ω) = ε∞ + S

(
ω2

0

ω2
0 − ω2 − iΓω3/c0

)
. (4.26)

We expect the largest influence on the dielectric constant to occur near the resonance frequency.
The term between brackets is then of order c0/Γω0. So Sc0/Γω0 is a measure for the “swing” of the
dielectric constant near the resonance. We would like to define some kind of polariton parameter
that measures the coupling between the light and the matter. We expect this parameter to depend
on the density of the scatterers and on the sharpness of the resonance. It is clear that Sc0/Γω0 is
ideal. So it makes sense to define a polariton parameter according to

P ≡
Sc0
Γω0

=
4πn

(ω0/c0)
3 . (4.27)

In terms of the resonance width ∆ω/ω0 = 1/ω0T2 the polariton parameter would be

P ≡
1

2
Sω0T2 . (4.28)

In terms of the extinction mean free path P can be expressed as,

P = (klext)
−1 . (4.29)

This expression establishes the link with multiple scattering theory, in which 1/k�ext shows up as
an expansion parameter [86].
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FIG. 7. Dispersion law (solid line) for a polariton with only small “polariton character”. The aptiodotted line represents the

imaginary part of the wave vector. The following parameters have been used: S = 0.25 and damping T2 = 4/ω0. In this case the polariton

parameter is P = 0.5. Since this is less than the critical value PC = 2 no spectral (pseudo) gap is present.

FIG. 8. Dispersion relation (solid line) for a polariton with strong ‘polariton character”. The dotted line represents the imaginary

part of the wave vector. The following parameters have been used: S = 0.25, and damping T2 = 50/ω0, so that P = 6.25. Note the

spectral gap that opens up beyond the resonant frequency.

In Fig. 7 we show real and imaginary part of the wave vector K calculated for a medium with
resonant point scatterers under various conditions. In Fig. 7 we have used S = 0.25 and ω0T2 = 4
meaning that P = 0.5. This describes a rather broad resonance with only moderate polariton
character. Close to the resonant frequency the dispersion is curved and the polariton acquires some
matter character, although we are still looking at it by means of the light. If we increase the
polariton character the dispersion law takes a more complicated S-like form as we already saw in
Fig. 1, where we used S = 0.25 and ω0T2 = 12, corresponding to P = 1.5. In the neighborhood of
the S-curve the dispersion becomes “anomalous”. This terminology refers to the negative slope of
the dispersion law. In that region of the frequency the polariton is called “material-like”. In the
regime where the dispersion law is normally increasing, the excitation is referred to as “photon-like”.
If we increase the polariton character even more by making S = 0.25 and ω0T2 = 50, correspond-

ing to P = 6.25 (Fig. 8) the dielectric function becomes even more complicated. For a range of
frequencies the real part of the wave vector is smaller than the imaginary part: the wave is over-
damped or evanescent. This is the region where the real part of the dielectric constant is negative.
If one would neglect the imaginary part this would give rise to an imaginary wave vector as k ∼

√
ε

and no propagation would be possible. One calls this a frequency gap or stop band. It is not a real
gap as the imaginary value cannot be neglected. Nevertheless, in the region for which the real part
of the wave vector is smaller than the imaginary part, propagation will be seriously hampered. The
critical parameter for which this occurs is P = 2 or klext = 0.5.
In atomic physics one often says that the sharpness of the resonance increases when the losses

decrease. In that terminology Fig. 8 represents an “almost lossless” case since the resonance is
very sharp. However, from the point of view of scattering any value of the damping parameter
can represent a “lossless” situation. This is the case if the imaginary part of the wave vector is
induced by elastic scattering. For the energy balance one should be willing to count the energy of
the scattered waves as well.
The group velocity vg can be defined as the local slope of the dispersion relation,
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FIG. 9. Phase velocity vp (solid line) and group velocity vg (dotted) of electromagnetic waves propagating through a collection

of point scatterers having an internal resonance with frequency ω0 as a function of frequency. The following parameters have been used:

S = 0.25 and the damping T2 = 12/ω0 (P = 1.5).

vg(ω) ≡
∂ω

∂k
. (4.30)

We emphasize that this is merely a formal definition. One still has to prove the physical relevance
of this velocity. Textbooks [87] prove the group velocity to determine transport of energy by
considering the propagation of a pulse inside a dispersive medium. But this notion only applies
when the dispersion law is real-valued, which is not the case for polaritons. Especially for frequencies
near the resonance frequency ω0 the imaginary part becomes very large and the group velocity looses
its connection with energy transport.
The physics behind the imaginary part has already been explained. It signifies extinction. As is

illustrated in Eq. (4.23) the amplitude decays exponentially in space, since its energy will be used
for other purposes, either elastic scattering, absorption or inelastic processes. Over distances small
compared to the extinction decay length one might neglect extinction at all, and take the real part
as in Eq. (4.30) and say that this group velocity describes the speed of energy propagation. Thus
at the very best, the group velocity describes the speed of propagation of the coherent beam over
one extinction mean free path.
In Fig. 9 we show the group velocity for a polariton with the same parameters as in Fig. 1. We

observe that the group velocity is diverging near resonance, and may even become negative. The
group velocity is said to loose its meaning near the resonant frequency. In the next section we
will show that its role will be taken over by a transport velocity for which this apparently acausal
behavior has been removed by adding the scattering channels.

4.3. Density of States

An important concept in multiple scattering theory is the density of states (DOS). We will first in-
troduce this concept for electrons in a (random) potential. For a quantum particle with Hamiltonian
H the expression ∫ E

−∞
dE ′

∑
i

δ (E ′ − Ei) =
∫ E

−∞
dE ′ Tr δ (E′ −H) , (4.31)



A. Lagendijk, B.A. van Tiggelen/Physics Reports 270 (1996) 143-215 184

counts the number of states with energy less then E. The integrand Tr δ (E −H) is the density
of states N(E). As always in quantum mechanics the trace of an operator, TrA =

∑
i 〈i|A |i〉, is

independent of the choice of a complete set of functions. As a result,

N(E) = Tr δ (E −H) . (4.32)

Additional spectral information can be obtained by projecting on a specific representation. It is
profitable to consider both the r and p-representation. The local density of states gives the number
of states in an energy range dE at position r,

ρ (E, r) ≡ 〈r| δ (E −H) |r〉 = −
1

π
Im G (E, r, r) . (4.33)

We will now consider an infinite, disordered system and add the averaging procedure. Averaging
induces translational symmetry. In that case the local density of states is equal to the density of
states per unit volume so that the local density of states does not render any more insight than
the total density of states. Consequently, some other additional characteristic of the modes may be
looked for. Since momentum is conserved in a translationally symmetric system, this seems to be a
good candidate. A spectral function S(E,p) can be introduced which gives upon integration over
momenta the density of states per unit volume,∑

p

S (E,p) = 〈〈 ρ (E) 〉〉 . (4.34)

The spectral function represents the number of modes (per unit volume) with energy E and
wavenumber p,

S (E,p) (2π)3δ(p− p′) ≡ 〈〈 〈p| δ (E −H) |p′〉 〉〉. (4.35)

For an electron obeying Schrödinger’s equation the spectral density S (E,p) can be obtained from
the Dyson Green’s function G(E,p). Using again the operator identity 1/(x+iε) = P (1/x)−iπδ(x)
we see that ImG(E + iε) = −iπδ(E −H) , so that

S(E,p) = −
1

π
ImG (E,p) . (4.36)

Apparently all spectral information can be obtained from G (E,p).
We would like use the same formalism for light and translate all these expressions for the density

of states to light, using the analogies discussed in section II. The results for the electrons act as a
guide, but the differences will be large. This has to do with the energy dependence of the “light
potential”. We have indicated already in section III.B.1 that in fact two Green’s functions exist.
The fact that the equations for light are not scalar but vector equations is an extra complication,
but turns out to be of less principal nature.
We consider some finite inhomogeneous dielectric medium with volume V . By definition, to find

the density of states, we first consider the eigenvalues of the wave equation in a frequency range
dω2,

N(ω2) =
∑
i

δ
(
ω2 − ω2

i

)
= Tr δ

(
ω2 − c20 ε(x)

−1/2 ·F(p) · ε(x)−1/2
)

(4.37)

= −
1

π
Tr Im G̃ (ω) c−2

0 . (4.38)
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The local density of states of electromagnetic waves can be defined as

W
(
ω2, r

)
= 〈r| δ

(
ω2 − c20 ε(x)

−1/2 ·F(p) · ε(x)−1/2
)
|r〉 = −

1

π
Im G̃ (ω, r, r) c−2

0 . (4.39)

In terms of G̃ the expression for the local density of states is similar to Eq. (4.33) found for electrons.
However, we would like to make the connection between the (local) density of states and the more
physical Green’s function G for the electric field. Let us first generalize the Helmholtz equation as
a kind of Schrödinger equation with an energy-dependent potential taken at fixed frequency ω,

{−F(p)+ [1− ε (x)] (ω/c0)
2} |Ei(ω)〉 = (ωi/c0)

2 |Ei(ω)〉 (4.40)

For any fixed ω the light potential is a fixed operator and standard Schrödinger operator theory
guarantees the existence of a complete set of solutions Ei(ω) of this equation. Using this set we can
work out the trace occurring in Eq. (4.37) as,

N
(
ω2
)
=
∑
i

〈Ei(ω)| δ
(
ω2 − c20 ε (x)

−1/2 ·F(p) · ε (x)−1/2
)
|Ei(ω)〉 ,

= c−2
0 Tr δ

(
ε (x) (ω/c0)

2 −F(p)
)
+
∑
i

〈Ei(ωi)| ε (x)− 1 |Ei(ωi)〉 δ
(
ω2 − ω2

i

)
(4.41)

The decomposition carried out in the second equality is not only mathematical but also physical in
the sense that it seems to separate the propagating response from the material response. We come
back to this point later.
In terms of the Green’s function G the first term in Eq. (4.41) is seen to be similar to the electron

case since

−
1

π
Im G (ω) = −

1

π
Im

1

ε (x) (ω/c0)
2 + iε−F

= δ
(
ε (x) (ω/c0)

2 −F
)
. (4.42)

The second term in N (ω2) strongly resembles the extra term in Eq. (3.38) that was shown earlier
to arise from stored energy inside the dielectric objects. This term is absent for electrons. Quite
conveniently we observe that for this term only the solution of the normal Helmholtz equation -
that is ω2 = ω2

i - is required.
The trace in the first term of Eq. (4.41) is best evaluated by using the complete set |r〉 . As usual,

the summation over the eigenfunction index i at frequency ωi goes over into the volume times the
integral over wave vectors and a summation over polarization indices j,

∑
i

→ V
∑
p,j

=
V

(2π)3

∫ ∞
0

dp p2
∫

dp̂
∑
j

. (4.43)

Writing dω2 = 2ωdω we get for the density of states per frequency range dω, per polarization
channel j,

N(ω, j) = −
2ω

πc20

∫
d3r Im Gjj (ω, r, r) +

ω2

2π2

∫ dk̂

4π

∫
d3r [ε (r)− 1]

∣∣∣E+
k,j (r)

∣∣∣2 . (4.44)

In the second term on the rhs. of Eq. (4.44) the volume factor V has been put into the field to
give it the same normalization as a plane wave. This transforms the eigenfunction Ei(ωi) into a
Lippmann-Schwinger distorted plane wave E+

k,j(r) given in (3.11).
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Up to now we considered a finite volume and did not average the density of states over the disorder
and the results sofar apply to any realization. Let us now calculate the average density of states, by
averaging over all possible positions of the scatterers, and take the thermodynamic limit in which
both the number of particles and the total volume go to infinity at constant number density n of
the particles. In that case the average local density of states becomes independent of position and
is simply the density of states per unit volume per polarization channel. This yields,

1

V
〈〈 N(ω, j) 〉〉 ≡ 〈〈 W (ω, j) 〉〉

= −
2ω

πc20
ImGjj (ω, r = 0) +

ω2

2π2
n
∫

dk̂

4π

∫
S
d3r [ε (r)− 1]

∣∣∣E+
k,j (r)

∣∣∣2 . (4.45)

S denotes the volume of only one scatterer, but E+
k,j (r) is still the exact distorted plane wave in

the medium. By symmetry 〈〈 W (ω, j) 〉〉 does not depend on the polarization channel j. We use
the symbol W for the density of states per unit volume of the light since it obviously coincides with
the electromagnetic energy density for which this symbol was used earlier. In leading order of the
particle density E+

k,j(r) may be replaced by the eigenfunction for one scatterer in vacuum; G (ω, r) is
the averaged Green’s function in real space. In view of Eq. (3.38) the two terms in Eq. (4.45) can be
interpreted physically as the contributions from radiation and material degrees of freedom. Indeed
the second term is absent in vacuum. For later purposes it is convenient to write the radiation part
as an integral over wave numbers. From Eq. (4.19) we can infer that the radiation part can be
further separated into a transverse and longitudinal part. This yields the final expression,

〈〈 W (ω, j) 〉〉 = 〈〈 W (ω, j) 〉〉rad + 〈〈 W (ω, j) 〉〉long + 〈〈 W (ω, j) 〉〉mat , (4.46)

where

〈〈 Wrad(ω, j) 〉〉 = −
2ω

πc20

2

3

∑
p

Im
[
ε‖ (ω, p) (ω/c0)

2 + iε− p2
]−1

,

〈〈 Wlong(ω, j) 〉〉 = −
2

πω

1

3

∑
p

Im ε⊥ (ω, p)
−1 , (4.47)

〈〈 Wmat(ω, j) 〉〉 =
ω2

2π2
n
∫

dk̂

4π

∫
S
d3r [ε (r)− 1]

∣∣∣E+
k,j (r)

∣∣∣2 .
The numerical factors 1/3 and 2/3 arise from the angular momentum integral. The dielectric func-
tion is real-valued in vacuum and so the longitudinal density of states is also absent in vacuum. From
that point of view the longitudinal contribution can also be considered as a material contribution.
It is instructive to evaluate the various terms explicitly for an ensemble of identical point particles

in the independent scattering approximation (ISA) introduced earlier. The t-matrix is given by
Eq. (3.21) and the average dielectric constant induced by these particles in Eq. (4.21). The longi-
tudinal part is divergent but can be regularized with the same cut-off as in section III.B.2.b. The
expressions can be put into the following form, using ISA,
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FIG. 10. Polariton behavior and spectral function S(ω, p). Top figure: Dispersion laws ω(p) defined in three different ways for a

polariton with P = 10 and T2 = 10/ω0. We adopted ε∞ = 1. Bold: maxima of S(ω, p) for fixed momentum p; Finely dashed: maxima of

S(ω, p) for fixed frequency ω; Broadly dashed: real part of the pole of the Dyson Green’s function. Far away from the resonant frequency

they all coincide. In the regime of resonant scattering they all differ, and the one to be used depends on the experiment. The first in

fact resembles the dispersion law of a “lossless” polarition. Like the second dispersion law it has no solution in a small spectral region

beyond the resonant frequency. The third dispersion law is strongly anomalous in this region, and its slope is usually associated with the

group velocity. Bottom figure: Density of states (DOS) per unit volume (energy density) for the same polariton. In bold is displayed the

radiation contribution; Finely dashed we show the the energy density of the matter only. The free density of states W0 is shown broadly

dashed. It is seen that on the left hand side of the resonance the radiation energy density is increased, and on the right hand side - the

spectral polariton gap - it is suppressed.

〈〈 Wrad(ω, j) 〉〉 = v−1
p W0(ω, j),

〈〈 Wlong(ω, j) 〉〉 =
γ

γ + 3
W0(ω, j) × nWpot (ω) , (4.48)

〈〈 Wmat(ω, j) 〉〉 =
3

γ + 3
W0(ω, j) × nWpot (ω) ,

where W0 (ω, j) = ω
2/3π2c30 is the radiation density per polarization direction in vacuum; We recall

that γ = ε− 1 is the polarizability density of the matter inside the scatterer. The potential energy
Wpot of one particle is given in Eq. (3.43). Longitudinal and material part have been evaluated in
leading order of the number density. Together they constitute the potential energy density nWpot

stored in the medium. From this example it is clear that the density of states per unit volume for
light is in fact the electromagnetic energy density in the medium. Far away from resonant scattering
(in particular in the static limit of small frequencies) the total energy is the one in vacuum times
the index of refraction cubed’: (1 + nαsph)

3.
The number of states available for the travelling waves is changed by the disorder by means of

the phase velocity. This is a very important conclusion. Any process that depends on the number
of available travelling waves will be changed by this factor. In the lower part of Fig. 10 we show
〈〈 Wrad(ω, j) 〉〉 for a polariton with a very sharp resonance. In the (pseudo) gap that opens up on
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the right hand side (ω > ω0) of the resonant frequency the number of travelling waves is inhibited
since the phase velocity is nearly infinite. On the left hand side (ω < ω0) the radiation density of
states is increased. Such a behavior may be anticipated since no states are destroyed or created
in the medium. The increment of a scattering parameter on one side of the resonance, and the
associated decrement on the other is a typical feature of resonant multiple scattering. Theoretical
indications exist that this characteristic behavior persists for high densities of the scatterers.
One of the factors that depends strongly on the number of travelling waves is the Einstein spon-

taneous coefficient of an atom. It can be argued that the density-of-states factor in Eq. (3.48) for
the spontaneous emission rate will in general be replaced by the one of the travelling waves, and not
the total one. It is well known that spontaneous emission can be seriously inhibited for atoms with
their resonant frequency in a region with small density of states, e.g. due to the polariton behavior
discussed above [88]. Contrary to what is generally believed it is not the total density of states that
determines the Einstein spontaneous emission coefficient, but rather the (local) radiation density
of states Wrad. This notion means that the suppression of spontaneous emission is larger than is
expected on the basis of the total density of states.

4.3.1. Spectral Function

As we discussed before shortly the local density of states does not render any more insight than
the total density of states if the system is translationally symmetric. A spectral function S(ω, j,p)
can be introduced which gives upon integration over momenta the density of states per unit volume
per polarization channel, ∑

p,j

S (ω,p, j) = 〈〈 W (ω) 〉〉 . (4.49)

The spectral function counts the number of modes (per unit volume) with frequency ω, polarization
j and wavenumber p. For the travelling-wave part - the genuine radiation part - we can just copy
what was found in Eq. (4.36) for electrons,

Srad (ω, j,p) =
2ω

πc20

1

(ω2/c20 +ReΣ⊥(ω,p)− p2)
2
+ (ImΣ⊥)

2 (∆p)jj ,

which translates in more physical quantities to,

Srad (ω, j,p) =
2ω

πc20

1

(k2 − 1/4�2ext − p2)
2
+ (k/�ext)

2 (∆p)jj . (4.50)

We used the definition of wave vector k (ω) and extinction mean free path �ext (ω) to convert the
Dyson self-energy into physical quantities. The form of this spectral distribution function depends
heavily on the value of k�ext.

When k�ext �
1
2
this distribution has most of its weight near the “momentum shell” defined by

p = k (ω). To be more precise, the maxima of the spectral function in the ω − p plane are, for a
given value of ω, located one the curve

p2
max (ω) = k

2 −
1

4�2ext

. (4.51)
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FIG. 11. Three dimensional visualisation of the total spectral function (including the material states) in the ω − p plane for the

same polariton as in Fig. 10 (polariton parameter P = 10). Notice the two branches where the maximum of S(ω, p) occurs, and the

(pseudo-) gap in between.

The maximum is seen to be slightly different from the momentum shell due to shift of the mean
free path. On the other hand for a fixed value of p, the maxima are two separate branches resembling
a polariton without damping. This is called the Raman dispersion curve of the polariton, since it
determines the peaks in spontaneous Raman scattering [89] (if the polariton is Raman active).
On the other hand when k�ext <

1
2
the shell has completely disappeared and the maximum of the

spectral distribution occurs at p = 0 : the waves are evanescent. In the upper part of Fig. 10 of we
compare the dispersion law ω (k) to the relation given by Eq. (4.51) and the Raman curve. It should
be remembered that the two latter curves only visualize a maximum of the spectral function. A
better understanding can be obtained from the three-dimensional plot 11. Exactly in the evanescent
region the maxima of the spectral function do not coincide with the dispersion law.
These results imply that the frequency regime characterized by

k�ext ≤
1

2
, (4.52)

is no longer one in which one can think in terms of plane-wave propagation and can therefore
be called the strongly scattering regime. A similar line of reasoning was put forward in 1960
by A.F. Ioffe and A.R. Regel [90] in their discussion of electron propagation in strongly doped
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semiconductors. The criterion (4.52) is therefore known as the Ioffe-Regel criterion for the strongly
scattering regime. It is frequently misused as a criterion for Anderson localization. We will comment
on this in section IV.F.4.
The mean free path that goes into the criterion (4.52) is the extinction mean free path, and counts

everything, including inelastic scattering. For atomic oscillators the inelastic component in the light
scattering is sometimes very large, and the strongly scattering regime can easily be realized.
Sofar we concentrated on the spectral function of the transverse propagating modes only. From

the expression of the density of states for the longitudinal solutions of the Maxwell equations, the
associated spectral function can be written down at once. For the matter part more work has to be
done. Nevertheless, the total spectral function, counting all possible states, can be directly obtained
from Eq. (4.41),

〈〈 W (ω) 〉〉 = 2ω 〈〈 Tr δ
[
ω2 − c20 ε (x)

−1 · p2∆p
]
〉〉

= 〈〈 Tr
[
ε (x)− c20 ω

−2p2∆p
]
δ
[
ε (x)ω2 − c20 p

2∆p
]
〉〉

+ Tr c20 ω
−2p2∆p · 2ω 〈〈 δ

[
ε (x) (ω/c0)

2 − p2∆p
]
〉〉 . (4.53)

We have made use of the cyclic property of the trace. The first term in this formula vanishes.
The trace can be replaced again by a momentum integral. The average of the delta-function is in
momentum space is the spectral function for the transverse electromagnetic waves. We arrive at a
very simple formula, namely [59]

S (ω,p, j) =
p2c20
ω2
× Srad (ω, j,p) . (4.54)

This formula demonstrates nicely that near the dispersion law the states are only travelling waves.
For p2 � (ω/c0)

2 one is also including the non propagating states of the matter. In the regime
p2 � (ω/c0)

2 only very few evanescent states are found. If there are no propagating states with
frequency ω and wave vector p, there are no states at all with these parameters.
The relation for the total spectral function looks deceivingly simple, despite the fact that it contains

all information of the excitations. We would like to emphasize that a full knowledge of S (ω,p, j) for
all arguments is never available. Furthermore, whereas the strongly simplifying shell approximation
for the spectral function (replacing it by a delta-function, with an appropriate weight) is reliable
for electrons, for light it would completely disregard the states of the matter that do not propagate.

4.4. Average Intensity from Scattering Theory

The most important element in physics is symmetry and the associated conservation laws. If a
quantity is conserved globally, the removal of a local imbalance will be slow (non exponential in
time) as transport over all of space is needed to get rid of the asymmetry. If there is no conservation
law operating we encounter the rather uninteresting situation that a local disturbance is removed
quickly (that is exponential in time). Whenever a quantity is conserved, the transport of its density
will be slow. Transport over long distances can then be modelled with a random walk picture and
a diffusion law. Sometimes the conservation law is not obeyed rigorously and a small amount of
local absorption is possible. If the absorption is small it can be dealt with as a perturbation. If the
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infringement of the conservation law is serious the whole concept of a random walk and diffusion
will break down.
Let us focus now on light scattering in disordered materials. We have seen in the previous section

that the coherent light beam looses its energy after one mean free path. Nevertheless, the scattering
objects satisfy the Optical Theorem so that conservation of energy is guaranteed during scattering.
It is physically obvious that the energy of the coherent beam is used for scattering in other directions.
This scattering can never be contained in the coherent beam, because this one propagates in a
translationally symmetric medium in which the direction of propagation is necessarily conserved.
Once scattered in some direction the wave serves as a new coherent beam and again decays in space.
This picture strongly suggests that a random walk model for the light indeed applies. The step
length is given by the mean free path of the light, and not by the average distance between the
scattering centers, which is often much smaller.
A number of objections can be raised against this simple picture. First of all, in the random walk

picture all different paths the wave can take are completely unaware of each other. All interference
has been neglected, and we are in fact following the motion of a soccer ball shot into a wood
(physically equal to the classical Lorentz gas). Secondly, it is unclear what happens if the scattering
objects come close together. The wave is no longer scattering from one particle but rather from
clusters of particles. Within this microscopic cluster, the random walk model fails completely. A
strict derivation of the laws that govern the transport of energy on all scales is thus demanding.

4.4.1. Microscopic Transport Equation

In this section we derive a rigorous transport equation starting from the wave equation. A vector
treatment for the various Stokes parameters has been given by Papanicolaou and Burridge [91]. A
scalar treatment will be given in order not to drown in polarization indices. The average radiation
density at time t and position r is proportional to the absolute square of the field amplitude:

I (r, t) ∼ 〈〈 |Ψ (r, t)|2 〉〉 . (4.55)

We will represent the scalar field by Ψ (r, t) and sometimes think of it as the electric field. Given
some perturbation we want to follow the average intensity in space and time.
Let us first focus on the time and forget about the averaging. If the perturbation occurs at time
t = 0 the intensity must be zero for t < 0. This asks for a Laplace transformation,

I (Ω) =
∫ ∞

0
dt |Ψ (t)|2 ei(Ω+iε)t . (4.56)

An infinitesimally small positive ε makes sure that this integral converges in critical cases. It is
convenient to disentangle the perturbation into frequency components, and write

Ψ (t) =
∫ ∞
−∞

dω

2π
Ψ (ω) eiωt . (4.57)

Inserting into Eq. (4.56) gives,
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I (Ω) =
∫ ∞
−∞

dω

2π
Ψ (ω + Ω/2 + iε) Ψ∗ (ω − Ω/2− iε) . (4.58)

Use has been made of the fact that Ψ (ω) can be analytically continued in the lower sheet Im ω < 0
since Ψ (t < 0) = 0. The frequency function under the integral sign determines the time aspects of
the propagation.
Let us next consider the spatial part, and add the averaging over realizations. We will drop the

frequency indices and add them later. The propagation from r to r′ is determined by the Green’s
function G (r, r′) . Knowledge of the average of the square of the Green’s function,

L(r, r′) = 〈〈G (r, r′)G∗ (r, r′)〉〉 , (4.59)

suffices to find the average disturbance at any position r′ in the medium given a source at another
specified position r. In general this function can depend on four positions, but for our purposes
we only need two. As was the case for the average amplitude the derivation is far more elegant in
momentum representation. We write,

G (r, r′) =
∑
p1,p2

G (p1,p2) e
i(−p1·r+p2·r

′) . (4.60)

Averaging restores translational symmetry so that L (r, r′) = L (r− r′) . This implies momentum
conservation,

〈〈 G (p1,p2)G
∗ (p3,p4) 〉〉 ≡ Φpp′ (q)× (2π)3

δ (−p1 + p2 + p3 − p4) . (4.61)

For later convenience we defined new momentum variables p, p′ and q according to p1= p+ q/2,
p2 = p′ + q/2, p3 = p− q/2. By momentum conservation p4 = p′ − q/2. Inserting this into
Eq. (4.59) gives us

L (r) =
∑
q

∑
pp′

Φpp′ (q)

 e−iq·r . (4.62)

Combining the results found in Eqs. (4.58) and (4.62) the object that determines the exact micro-
scopic space-time behavior of a disturbance is Φω,pp′ (Ω,q) and is defined by

〈〈 G (ω + Ω/2 + iε,p1,p2)G (ω − Ω/2− iε,p3,p4) 〉〉

≡ Φω,pp′ (Ω,q) × (2π)3
δ (−p1 + p2 + p3 − p4) . (4.63)

The frequency Ω and the momentum q are identified as the conjugate variables of the carrier wave
that supports the disturbance. The frequency ω and the momentum p denote genuine internal
oscillations of the wave packet in space and time. In most cases these parameters are orders of
magnitude larger than the slow variables Ω and q. From now on we shall discriminate between slow
and fast variables by referring to the fast variables by means of subscripts (Fig. 12). The momentum
p′ is associated with spatial characteristics of the source and is automatically summed over when
the initial disturbance originates from a point. The transport quantity is then,

Φωp (Ω,q) =
∑
p′

Φω,pp′ (Ω,q) . (4.64)
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FIG. 12. A typical wave packet (either in space or time) that we envisage in our transport equation. Internal oscillations occur

at frequency ω (in time) and wave vector p (in space); The envelope is described by the frequency Ω (in time) and the wave vector q

(in space). These two variables are much smaller than the the ones characterizing the internal oscillations. This is the “Slowly Varying

Envelope Approximation”. The wave packet is denoted mathematically by Φωp(Ω,q). Apart from numerical constants this is the exact

microscopic definition of the “specific intensity” featuring in radiative transport theory.

Having identified the appropriate transport quantity, we are left with the determination of its
properties. As was the case with the self energy Σ in the coherent beam, a definition of a building
block for the intensity will give us deeper insight. The Irreducible Vertex U is defined by the
(operator) relation,

〈〈 G (ω)G∗ (ω′) 〉〉 = G (ω)G∗ (ω′) + G (ω)G∗ (ω′) U (ω, ω′) 〈〈 G (ω)G∗ (ω′) 〉〉 , (4.65)

G (ω) denotes the averaged Dyson Green’s function that was already obtained earlier for which
we do not show the averaging brackets explicitly. The equation shown here is widely known as the
Bethe-Salpeter equation. In a translationally invariant medium full use can be made of momentum
conservation, and the Bethe-Salpeter equation can be transformed into one for the object we need,
namely Φωp (Ω,q) . We will spare the reader some algebraic details (see e.g. [92] [93] [94] ). What
comes out is,[
iωΩ

c20
− ip · q+∆Σωp (Ω,q)

]
Φωp (Ω,q) = ∆Gωp (Ω,q)

1 +∑
p′
Uω,pp′ (Ω,q) Φωp′ (Ω,q)

 . (4.66)
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In this equation we introduced

∆Σωp (Ω,q) ≡
1

2i
{Σ (ω + Ω/2 + iε,p+ q/2)− Σ (ω − Ω/2− iε,p− q/2)} ,

in terms of the Dyson self energies defined earlier. Exactly the same definition holds for ∆Gωp (Ω,q)
in terms of the Dyson Green’s functions. The convention of the matrix element Uω,pp′ (Ω,q) is
exactly the same as for Φω,pp′ (Ω,q) .
The physical interpretation of Eq. (4.66) is the following. The Ω-term on the left hand side will

act as a time derivative in time coordinates. The second term is a typical hydrodynamic flow term,
and contains in coordinate space a gradient. The ∆Σ-term comes from the average amplitude and
was already shown to represent loss of energy (extinction). The second term on the right hand
side contains crucial new information. It represents the scattered intensity from all directions p′

into the direction p. Not all absolute values of p′ count since the ∆G-factor makes sure that only
momenta near the dispersion relation come in, as expected physically. The object Uω,pp′ (Ω,q) is
the rigorous microscopic “building block” for scattering processes in the medium, ∆Σωp (Ω,q) the
one for extinction. The first term on the right hand side is a source term that shows up from the
initial value problem. The physical interpretation of Eq. (4.66) is therefore

[∂t + v · ∇+ losses] Iv (r, t) = Source + scattering . (4.67)

This looks very much like a transport equation for a particle; v is the velocity associated with
the particle, which maps onto the momentum p of the wave. This balance equation can be recog-
nized as a generalized Boltzmann equation. It is the most important equation of transport theory.
Generalized, because all microscopic time and space correlations are still included.
As always with exact microscopic equations they cannot be solved exactly and one has to rely

on approximations. In lowest order of the scatterer density we anticipate the building block to
be determined by the exact single scattering solution. Concerning the loss term this was already
shown to be true in Eq. (4.20). A similar formula holds for the single-scattering contribution to the
Irreducible Vertex. We have

Σ(1) (ω,p) = nTpp (ω) ,

U
(1)
ω,pp′ (Ω,q) = nTp+p′+

(
ω +

Ω

2
+ iε

)
Tp′−p−

(
ω −

Ω

2
− iε

)
. (4.68)

The replacement of U by U (1) is widely known as the Boltzmann approximation. If the single particle
properties are known completely, the transport equation can in principle be solved. We emphasize
that this equation is derived for an infinite medium. In all applications one uses this equation
supported by boundary conditions to find the transport in a finite medium, with considerable
success. This is not a good approach for optically thin media.
Two important physical quantities to be determined are the (average) local energy density of

the radiation and the local current density with which it propagates. The radiation density was
already found in Eq. (4.46) for light in a stationary (Ω = 0) situation. For scalar waves the local,
time-dependent radiation density is proportional to |Ψ (r, t)|2 given in Eq. (4.55 ). Expressed in
Fourier and Laplace variables it becomes,
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W rad
ω (Ω,q) ≡ (ω/c0)

2
∑
p

Φωp (Ω,q) . (4.69)

We added the frequency factor in order to be consistent with Eq. (2.14) in section II. Similarly the
current density at frequency ω can be identified as,

Jω (q) = ω
∑
p

pΦωp (q) . (4.70)

4.4.2. Steady State: Ω = 0

A steady state is characterized by a stationary flow of particles or energy. This is not the same as
equilibrium. In equilibrium the flow should be zero because the flow of two different mechanisms
compensate (think of a copper wire in thermal equilibrium, where the diffusion flux of electrons is
compensated by the drift induced by an external electric field). A steady state is only achievable
in a finite medium. In an infinite medium a small perturbation will spread without end.
The stationary case is the typical case encountered in astrophysics. Sources are usually time

independent on the time scales that light needs to travel through a stellar atmosphere or interstellar
cloud. Accordingly, this situation is extremely well documented in standard astrophysical references
[2] [3]. In laboratory experiments the steady state is reached when a scattering medium is being
exposed to a stationary light source. In many cases this is a laser with a frequency ω in the optical
regime. The rapid optical oscillations of the laser light are not considered time dependent since any
detector will average them out automatically.
Mathematically, the steady state is characterized by Ω = 0. We are now following the motion of
|Ψω (r)|

2 in space. Only one frequency, namely ω, enters the problem. For that reason we will no
longer use the variable Ω explicitly.
Let us first find a rigorous result that we get almost for free. If we adopt scatterers (no matter how

difficult) that scatter light purely elastically, no energy will be lost in the medium. In a stationary
situation this implies that the divergence of the current density (4.70) should vanish, or be equal
to possible local sources. If we integrate left and right hand side of our transport equation over the
momentum p all losses are to be compensated by the gain. This provides us with,

∆Σωp (q) =
∑
p′

∆Gωp′ (q)Uω,p′p (q) . (4.71)

This is an extremely important result. It tells us that conservation of energy gives rise to an identity
between the average amplitude and the average intensity. In field theory such an equation is called
a Ward Identity.
We will proceed with the low-density approximation (4.68). In general one has to be very careful in

approximating exact equations because the approximation might break the symmetry and destroy
the associated conservation law. The only way to make the approximation (4.68) consistent with
the exact identity (4.71) is to let

∆Gωp (q)→ ∆G0
ωp (q) . (4.72)

The index zero indicates vacuum. The momentum q is the conjugate variable of macroscopic length
scales, which are assumed larger than the physical size of the scattering objects. We may therefore
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neglect it consistently in both ∆Σ, ∆G and U . Physically we have now have imposed that the
scatterers see each other in their far field. This approximation does not break the symmetry, but
simplifies the transport enormously. It can be inferred that ∆G0 (q =0) = −πδ

(
(ω/c0)

2 − p2
)
, so

that momentum comes on the momentum shell in vacuum. The Ward identity Eq. (4.71) has now
become equal to the Optical Theorem (3.30) derived earlier for single scattering. One often prefers
to choose the momentum shell in the medium defined by the phase velocity in order to appreciate
the impact of the effective medium on the current (all modifications in second order of the particle
density caused in this way are not rigorous). A specific intensity can be introduced according to,

ω2

c20
Φωp (q) ≡

16π3vp

ωc0
δ

(
ω2

v2
p

− p2

)
Iω,(ω/vp)p̂ (q) . (4.73)

Following the convention in astrophysical literature, we chose the front factor such that the radiation
density (4.69) equals the angular integral of the specific intensity, divided by c0:

W rad
ω (Ω,q) =

1

c0

∫
d2p̂ Iω,(ω/vp)p̂ (q) . (4.74)

By k we shall always denote a wave vector on the momentum shell |k| = ω/vp. The generalized
Boltzmann equation simplifies to a closed equation for the specific intensity,[

−i
c0

vp

k̂ · q− n
Im Tkk (ω)

ω/c0

]
Iωk (q) = constant + n

∫
d2k̂′

|Tkk′ (ω)|
2

(4π)2 Iωk′ (q) . (4.75)

For practical purposes this equation must be transformed back to real space. The loss term can be
identified as nσscat (σscat being the total scattering cross-section) and equals the inverse mean free
path. The gain term contains the differential cross section for scattering from k′ to k. Writing this
in terms of the phase function,

n
dσ

dΩ
(ω,k′ → k) =

1

�
× Φω (k,k

′) ,

and scaling the distance with the mean free path τ = r�, we can write[
c0
vp
k̂ ·∇τ+1

]
Iωk (τ ) = source +

∫
d2k̂′ Φω (k,k

′) Iωk′ (τ ) . (4.76)

This equation is the Equation of Radiative Transfer, first derived phenomenologically by astrophysi-
cists. It can straightforwardly be extended for vector scattering [2]. The source is often replaced
by boundary conditions for the specific intensity in some direction. In case absorption or inelastic
scattering occur, an additional loss term enters. The factor c0/vp is the index of refraction of the
effective medium.
In the stationary situation the measurable quantity turns out to be the specific intensity in some

direction. In section II it was mentioned that in comparing light with electrons the currents are
very similar. For that reason the Equation of Radiative Transfer must hold for electron-impurity
scattering as well. Only minor modifications will come in if the underlying structure is crystalline
and not vacuum. Indeed, Eq. (4.76) is frequently used to find the Ohmic resistance of a doped
metal.
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a. Diffusion Approximation: q→ 0, Ω = 0 Even for simple geometries and phase functions
the exact solution of Eq. ( 4.76) must be obtained numerically. We will now discuss an approximate
solution which works very well in practise, and provides closed-form formulas even for complicated
geometries and phase functions: the diffusion approximation [95].
The derivation is simplest in momentum space. As mentioned before the variable q is a small

variable as it represents the wave vector of a macroscopic perturbation from homogeneity. Small
inhomogeneities give rise to currents so that the local specific intensity is no longer isotropic. We
can account for such anisotropy by expanding the specific intensity as

Iωk (q) =
c0

4π

[
W rad

ω (q) + 3
vp

c20
k̂ · Jω (q) + · · ·

]
. (4.77)

Higher multipoles can be added to improve accuracy. The diffusion approximation consists of
considering only the isotropic term and the dipole term. In the diffusion approximation radiation
density and current density have become the only two characteristics of the intensity pattern and the
rest has been ignored. Their relation can now be found from the first two k-moments of Eq. (4.75):

−iq · Jω (q) = constant ,

1

3

c20
vp
iq W rad

ω (q) = �−1
∫

d2k̂′ Φω (k,k
′)
[
1− k̂ · k̂′

]
Jω (q) . (4.78)

In coordinate space this can be written as,

∇ · Jω (r) ∼ δ (r) = source ,

Jω (r) = −
1

3

c20
vp
�tr∇W

rad
ω (r) . (4.79)

They can be combined to one equation,

−
1

3

c20
vp
�tr∇2W

rad
ω (r) ∼ δ (r) = source . (4.80)

The transport mean free path has been defined as,

�tr ≡
�∫

d2k̂′ Φω (k,k′)
[
1− k̂ · k̂′

] = �

1− 〈cos θ〉
. (4.81)

The length scale in diffusion is not equal to the scattering mean free path if the particles scatter
anisotropically. This is the first difference we encounter between average amplitude and average
intensity. Strictly speaking, the transport mean free path is not a length scale like the scattering
mean free path since nothing decays exponentially with this length. Equation (4.80) resembles the
electrostatic potential of a point charge. Hence the radiation energyW rad

ω (r) decays as 1/r Coulomb
law from the source. It may seem a lot work to derive this simple result, but we succeeded in giving
the diffusion phenomenon a microscopic base.
The diffusion approximation works surprisingly well experimentally [96], and turns out to be valid

far beyond the regime for which it was originally derived. Despite the name “diffusion approxima-
tion”, no diffusion constant showed up so far. We will deal with this now.
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4.4.3. Dynamic Aspects: Ω �= 0

The dynamics of light propagation comes in when a finite value for Ω is adopted. Let us first
mention a wrong result that is frequently encountered in literature. In a phenomenological treatment
time dependence of the specific intensity can be incorporated by adding a time derivative in the
Equation of Radiative Transfer, which then reads,[

−τmf ∂t +
c0
vp

k̂ ·∇τ+1

]
Iωk (r, t) = source +

∫
d2k̂′ Φω (k,k

′) Iωk′ (r; t) . (4.82)

The time τmf =�/vp is the mean free time between the collisions. This equation turns out to
have no microscopic base! See here the risk of phenomenological derivations. It has turned out
experimentally that for resonant multiple scattering of light this equation is simply wrong. The
explanation is that it does not take into account the delay that a wave undergoes during scattering.
In resonant light scattering this time is known to be considerably larger than the average time
between two collisions. The error in Eq. (4.82) is due to the difference between light and electrons:
Eq. (4.82) is correct for electrons.
a. Transport Velocity Let us first see how the equation of continuity looks like for the light

transport in the random medium. To this end we have to go back to our exact transport equation
(4.66) which we can integrate over all momenta p. Doing this yields,

iΩW rad
ω (Ω,q)− iq · Jω (Ω,q) + ω

∑
p

∆Σωp (Ω,q)−
∑
p′

∆Gωp′ (Ω,q)Uω,p′p (Ω,q)

Φωp (Ω,q)

= ω
∑
p

∆Gωp (Ω,q) . (4.83)

The structure of this equation is nearly the one of a continuity equation. From the exact expression
(2.14) derived in the section II it is obvious that W rad

ω is not the proper conserved quantity. In the
previous chapter we called |Ψ (r, t)|2 the radiation contribution to the total energy density. From
this it follows that the complicated third term in Eq. (4.83) must represent the potential energy
of the matter. The conservation law (4.71) found earlier shows that this term must at least be
proportional to Ω, in order to correspond to a time derivative. Thus in principle we obtain,

∂tW
rad
ω +∇ · Jω + ∂tW

pot
ω = source . (4.84)

Two basic conclusions can be drawn immediately. First for De Broglie waves we already know that
the potential energy is not allowed to show up in the equation of continuity: |Ψ (r, t)|2 is the exact
conserved quantity. This simple notion implies that

quantum⇒ ∆Σωp (Ω,q)−
∑
p′

∆Gωp′ (Ω,q)Uω,p′p (Ω,q) = 0 . (4.85)

Secondly, the violation of this identity in case of finite Ω for scalar waves should represent the
potential energy W pot

ω stored in the dielectric scatterers. Thus Eq. (4.85) is wrong for light when
Ω �= 0. From the results of section III.B.3 a violation of Eq. (4.85) can indeed be anticipated
for classical waves since extra terms will be generated by the presence of the frequency dependent
potential (2.8). As has been shown such frequency dependence describes internal degrees of freedom.
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The internal degree of freedom shows up elegantly and automatically in the energy balance. We
shall denote the deviation of relation (4.85) by iΩω × δω. Thus,

classical waves⇒ ∆Σωp (Ω,q)−
∑
p′

∆Gωp′ (Ω,q)Uω,p′p (Ω,q) ≡ i
Ωω

c20
× δω (Ω,q) �= 0 . (4.86)

We calculate δω making the same low-density approximation given by Eqs. (4.68) and (4.72). We
adopt the same simplification as in the steady-state case, that is ISA and Boltzmann approximation.
This results in,

δ(1)
ω = n

[
−
∂Re tkk (ω)

∂ (ω/c0)
2 +Rω + c0

∫
dΩk′

dσ

dΩ
(k′ → k)

∂Φ (ω,k,k′)

∂ω

]
+O (Ω) . (4.87)

We abbreviated,

Rω = −n
∑
p

∂Re G0 (ω, p)

∂ (ω/c0)
2 ·

|tkp (ω)|
2

(4π)2 .

Next we can apply the fact that δω = 0 for quantum wave functions. As a result only terms caused
by the “frequency dependent potential” come in. The term Rω is in its full extent subject to the
quantum cancellation, since it does not suffer from a frequency dependence of the light potential.
Using Eq. (3.39), we get the desired result that

δ(1)
ω = nWpot (ω) ,

where the potential energy of one particle (normalized to the outside) is given by Eq. (3.40). The
equation of continuity takes therefore exactly the form as was announced in Eq. (4.84). We find
that the stored energy is at any time proportional to the radiation energy. Therefore the radiation
satisfies the continuity equation,

∂t
[
1 + δ(1)

ω

]
W rad

ω +∇ · Jω = source . (4.88)

The matter has now been integrated out and a modified equation of continuity for the radiation
remains.
In general an equation of continuity may serve as definition of a velocity, keeping in mind that a

current is a density times a velocity. The transport velocity vE can be defined as,

vE =
Jω

W tot
ω

=
1

1 + δ
(1)
ω

·
Jω

W rad
ω

. (4.89)

Since Jω/W
rad
ω = c20/vp,

vE (ω) =
c20
vp
·

1

1 + δ
(1)
ω

=
c20
vp
·

1

1 + nW pot
ω

. (4.90)

This transport velocity is the one that determines energy transport. As such, it must be subject to
Einstein causality and always be less than the velocity in vacuum. In Fig. 13 we show the transport
velocity of light in a medium with resonant point scatterers (we used the same parameters as in
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Fig. 9). In the previous chapter it was noticed that group and phase velocity do not satisfy causality
and can therefore never be the correct velocity of light in the multiple scattering regime.

FIG. 13. Phase velocity vp (dash-dotted line), group velocity vg (dotted, for clarity the absolute value has been taken) and

transport velocity vE (solid line) of electromagnetic waves propagating through a collection of point scatterers having an internal resonance

with frequency ω0 as a function of frequency ω. The following parameters have been used: S = 0.25 and the damping T2 = 12/ω0

(polariton parameter P = 1.5). All parameters are the same as in Fig. 9, in which the transport velocity was not presented.

FIG. 14. Phase velocity vp (dash-dotted), group velocity vg (dotted, as in the previous figure the absolute value has been taken),

and transport velocity vE (solid line) of vector (light) waves propagating through a collection of finite size scatterers at a volume fraction

of f = 0.2 and index of refraction of the scatterers m = 2.7. On the horizontal axis the size parameter x ≡ ωa/c0. Note the large

reduction of vE from c0.

As can be seen form Fig. 9 the transport velocity is smooth, causal, and in fact very small near
the resonance. In atomic systems the velocity can be orders of magnitude smaller than c0. For Mie
scatterers we have calculated W pot

ω already in section III.B.1. In Fig. 14 we show the transport
velocity for Mie spheres with index of refraction m = 2.73 (Titanium-dioxide in vacuum). The
velocity is seen to be small near every resonance. This has been confirmed by experiments [20].
One might pose the question in which special circumstance transport and phase velocity coincide,

and in which special circumstance group and transport velocity coincide. The second question can
be answered by inspection of Eq. (4.87). This equation contains three terms. Recalling Eqs. (4.21)
and (4.30) the first term can be recognized as the contribution of the group velocity of the coherent
wave. The second term Rω is more difficult to identify, but insertion of a point scatterer model (for
which the t-matrix is independent of momentum) reveals that it is zero. It is therefore not likely
that this term is going to be a crucial one. The third term is a collisional contribution which could
only be found by considering the average intensity, and not only the coherent beam. It counts the
delay a scattered wave will undergo. Apparently it largely compensates for the anomalous behavior
of the group velocity. Group and transport velocity thus coincide in the absence of scattering. This
is true in a homogeneous, dispersive dielectric medium.
The difference between transport and phase velocity is due to microscopic resonances. These are

absent at low frequencies. It can easily be shown that at low frequencies (the Rayleigh regime) the
Boltzmann approximation gives vE = vp, no matter how complicated the dielectric scatterer. Note
that we need the collisional contribution - a rather technical element - to arrive at this elementary
conclusion. Without this term we would have obtained vE = c20/vp for the Rayleigh regime. In fact
it is also possible to find a model for which vE = c20/vp. This happens when the dielectric constant
is infinite as is true for perfect metallic scatterers. An erroneous conclusion that one always arrives
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at vE = vp for scalar waves was published by Barabanenkov and Ozrin [97]. The error resulted from
the replacement of the spectral function S(E, p) by a Dirac delta distribution [98]. We mentioned in
section III.C.1 that this simplification - successfully used for electron-impurity scattering - strongly
underestimates the role of the non-propagating material states.
Using the results of the previous chapter, very transparent expressions can be obtained for the

transport velocity. In terms of the dwell time the transport velocity becomes,

vE ≈
c0

1 + τd/τmf

. (4.91)

In our approach vE emerges in a full transport theory, starting from the wave equations. As such it
will appear in all dynamic transport properties like the diffusion constant, for any possible scatterer.
Expression (4.91) looks simple and could have been obtained heuristically. We want to emphasize
that such an heuristic reasoning would lead to an erroneous conclusion for De Broglie waves.
Eq. (4.91) applied to point scatterers coincides with expressions obtained by others for semi-

classical oscillators and two-level atoms. Brillouin [21] and Loudon [23] derived an “energy velocity”
by considering the energy balance. Whether the energy travels ballistically or diffuse is not addressed
in their work. Holstein [16] found the transport velocity in a phenomenological way in the context
of radiation trapping, where it figures in the diffusion constant of incoherent light.
b. Diffusion Approximation: q→ 0, Ω→ 0 We replaced earlier the Equation of Radiative

Transfer by a diffusion equation. In the following we investigate how this equation will change in
dynamic situations. The frequency Ω describes the macroscopic time dependence of a perturbation.
As such it can be expected to be small compared to for instance the optical frequency ω. Thus the
diffusion approximation will now apply when both Ω and q are small. In response theory this is
called the “Kubo limit”. Note that the rang of the two limits is very important, and cannot be
interchanged.
Given the results for Ω = 0 and for vE it is not difficult to infer that the diffusion approximation

as defined already in Eq. (4.77 ) generalizes in dynamic situations to,

iΩ [1 + δω]W
rad
ω (Ω,q)− iq · Jω (Ω,q) = constant ,

−i
Ω

c0
[1 + κω]Jω (Ω,q) +

1

3

c20
vp
iqW rad

ω (Ω,q) =
1

�tr
Jω (Ω,q) . (4.92)

The quantity κω that shows up here has a similar expression as δω, except for an extra cosine
weighting in the scattering term. In the diffusion approximation it is neglected, since it goes
together with an Ω2-term in the final expression for the radiation density. Combination yields,

W rad
ω (Ω,q) =

1

−iΩ/vE + 1
3
�trq2

. (4.93)

Translating to space and time variables the equation takes the form,[
1

vE
∂t −

1

3
�tr∇2

]
Wω (r,t) = source . (4.94)

This is recognized as a diffusion equation. We identify the diffusion constant

D =
1

3
vE�tr . (4.95)



A. Lagendijk, B.A. van Tiggelen/Physics Reports 270 (1996) 143-215 202

This relation between mean free path and diffusion coefficient is very general and can be found,
besides the field of radiative transport theory, in many other areas of statistical physics where
diffusion occurs. For electromagnetic wave diffusion the velocity entering the diffusion constant of
the radiation is the transport velocity, and not the group or phase velocity. We want to emphasize
that velocity and mean free path show up separately in the diffusion equation, and not as the
diffusion constant as a whole. In a stationary situation, when Ω = 0, the transport velocity has no
physical meaning.
Although derived for an infinite medium, the diffusion equation can be solved straightforwardly

for any geometry once boundary conditions are added. As such both D and �tr are quantities that
can be determined independently from the experiment. This makes the velocity vE an observable
quantity, albeit indirect.
How small Ω and q have to be for the diffusion approximation to become valid, can easily be

estimated. The relevant length scale is the (transport) mean free path �tr and the relevant time
scale is the transport mean free time τtr = �tr/vE . So the diffusion approximation is expected to
apply when

q�tr � 1 ; Ωτtr � 1. (4.96)

In a finite system with thickness L the stationary Ω = 0 theory applies when

Ω <
D (ω)

L2
. (4.97)

This is the regime of transient diffusion.

4.5. Einstein Relation For Light Conductance

The Equation of Radiative Transfer offers insight into the various direction channels that go in
and come out. The DC light conductance can be calculated as the “all-channel-in all-channel-out
transmission coefficient. We shall calculate it for a slab with length L, and surface A within
the diffusion approximation discussed earlier [95]. A surface A gives rise to a number Ak2/π
of conducting channels. If this number is large enough all these channels can be considered to
contribute independently to the transmittance.
To find the transmission coefficient of one channel we must deal with the boundary conditions.

The boundary at which the incident field comes in must be subject to the condition that the flux
coming in is Jin

ω , along the z-axis; The other boundary has the property that nothing is coming in.
Within the diffusion approximation the specific intensity is given by Eq. (4.77). For the flux going
to the left J+

ω and the flux going to the right J−ω we obtain,

J+
ω (z) = 2π

c20
vp

∫ +1

0
d cosθ Iω (θ, z) cos θ =

1

4

c20
vp

W rad
ω (z) +

1

2
Jω (z) ,

J−ω (z) = 2π
c20
vp

∫ −1

0
d cosθ Iω (θ, z) cos θ =

1

4

c20
vp

W rad
ω (z)−

1

2
Jω (z) . (4.98)

The total current along the z-axis is Jω = J+
ω − J

−
ω . By Eq. (4.79) it equals,

Jω (z) = −

(
1

3

c20
vp
�tr

)
∂zW

rad
ω (z) . (4.99)

The boundary conditions become, in the diffusion approximation,
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J+
ω (z = 0) = J in

ω ; J−ω (z = L) = 0 , (4.100)

and are called the radiative boundary conditions. The solution of the diffusion equation supplied
by these boundary conditions is,

W rad
ω (z) =

J in
ω

vp
· 4
L+ 2

3
�tr

L+ 4
3
�tr

(
1−

z

L+ 2
3
�tr

)
. (4.101)

Multiplying by the number of channels we obtain for the transmittance,

T (ω) ≡
Ak2

2π
·
Jω (z = L)

J in
ω

=
Ak2

2π
·
−1

J in
ω

(
1

3

c20
vp
�tr

)
∂zW

rad
ω

= 2πWrad (ω) ·
1

3

c20
vp

�tr ·
A

L+ 4
3
�tr
. (4.102)

Here Wrad (ω) is the radiation density of states per unit volume given in Eq. (4.48). This formula
can be rigorously derived from the Equation of Radiative Transfer (see the book of Van de Hulst
[3] ). The transmittance is inversely proportional to the length of the slab, and proportional to its
surface. In solid state physics this result is known as Ohms law for the DC conductance. The DC
conductivity for light at optical frequency ω can now be defined as for electrons (that is Eq. (1.7)
with e, h̄ = 1),

2πσlight (ω) ≡ T (ω)
L

A
. (4.103)

We can rearrange Eq. (4.102) into a different form by multiplying numerator and denominator by
the transport velocity vE. In terms of the transport velocity, formula (4.48) for the total electro-
magnetic energy density can be rewritten as

W (ω) =Wtrans (1 + δω) =
c20
vEvp

Wrad , (4.104)

so that the light conductivity takes the form,

σlight (ω) = W (ω)D (ω) . (4.105)

For the DC conductivity of electrons this result would be called the Einstein relation. It is one of
the most important results of electron transport theory and is here derived for light. The Einstein
relation is apparently true for light only when the total energy density is used, and not only the one
of the travelling waves.
The interesting feature of the Einstein relation for light is that the diffusion constant D and the

energy density W are both dynamic transport parameters. On the other hand the conductivity is
a stationary quantity. By virtue of the Einstein relation it is tempting to translate observations
made on the DC conductivity into statements regarding the diffusion constant. Not only does this
ignore the role of the density-of-states factor, it also suggests that the diffusion constant and all
characteristics associated with it are DC properties of wave propagation. In a stationary experiment
one can measure the mean free path, the conductance or transmission, but never the diffusion
constant.
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4.6. Restrictions of Boltzmann Theory

So far we considered transport of light using the scattering of one particle as a building block.
We showed that this provides a mathematically consistent framework. If the scatterers are closely
packed this may no longer be a good physical description of the random medium. There are a
number of modifications of normal Boltzmann theory that one can think of when the particle
density becomes large.

• Light scatters no longer from one particle, but rather from clusters of particles. For light,
the scattering from clusters is referred to as dependent scattering. Dependent, because the
scattering from an object depends on other the objects in its local environment. To describe
this feature one has to be very careful not to “double count” the propagation of a wave from
one particle to the other, and do the book keeping properly. In addition, one must include
scattering from clusters without violating energy conservation. Without energy conservation
the diffusion constant looses its meaning since even macroscopic disturbances will disappear
exponentially in time. Dependent scattering can be severe when the particles scatter the light
strongly, that is for resonant scattering [14].

• Concerning the averaging over all possible locations of the scattering objects one has to keep
track of excluded volumes and correlations. This implies a deviation from Poissonian statistics
of the location for the scattering centers. Realizations of the random system where two or
more dielectric particles are put on top of each other are to be excluded.

• Interference of two different light paths in the random medium has been fully neglected in
the Boltzmann approximation. The occurrence of interference is an important difference with
radiation trapping [16].

• Scatterers see each other in their near radiation field. The far 1/r field described by the
scattering cross-section will no longer suffice to describe multiple scattering.

The following hand waving argument may be applied to estimate the importance of recurrent
scattering in the coherent beam. We will allow absorption by introducing explicitly the albedo a.
A leading correction to Boltzmann theory is likely to be the recurrent scattering of a wave from a
cluster of two particles. For point particles and scalar light its contribution to the self energy reads,

〈p1|Σ (ω, 1− 2− 1) |p2〉

= n2
∫

d3r1

∫
d3r2 t1 (ω)G0 (ω, r12) t2 (ω)G0 (ω, r21) t1 (ω) e

ir1·(p2−p1)

= i
n2t (ω)3

8πω/c0
× (2π)3 δ (p1 − p2) . (4.106)

Comparing this to the independent-scattering approximation nt (ω) × (2π)3 δ (p1 − p2) brings us
to the conclusion that the modification is of order one when n |t (ω)|2 /8π ≥ ω/c0. We can identify
|t|2 /4π as the scattering cross section for scalar waves. It can be transformed into the extinction
cross-section using the albedo a, which is at most unity in the presence of purely elastic scattering.
We find that dependent scattering becomes dominant when,

k�ext ≤ 2a . (4.107)
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FIG. 15. The Van der Waals interaction and the Induced Dipole-Dipole interaction known in atomic physics compared to

dependent scattering modifications in transport theory. For the first one has integrated out the light, for the second one has integrated

out the matter.

The role of dependent scattering is thus determined by a criterion similar to the criterion (4.52)
for the strongly scattering regime. However, the albedo factor makes sure that strong absorption
or inelastic scattering suppresses recurrent scattering considerably.
Correlations and dependent scattering are often included by means of an “effective medium which

is self-consistently obtained using a non-linear equation [18] [19]. Very often, a modified Boltzmann
picture shows up and one can really speak of engineering with Boltzmann theory. We want to
expose here some genuine new effects that show up when one goes beyond Boltzmann theory.
These should not be seen as corrections to an old picture but really demand a new picture. We will
show how dipole-dipole forces between two particles expose themselves as a dependent scattering
phenomenon in a multiple light scattering theory. We discuss briefly Coherent Backscattering
resulting from interference in multiple light scattering. We shall explain why the inclusion of
interference is necessary to restore reciprocity. We point out how the Lorentz-Lorenz formula (4.8)
naturally arises from the Dyson equation with pair correlation. Finally we briefly sketch the possible
dramatic consequences of interference: Anderson localization.

4.6.1. Induced Dipole-Dipole Coupling & Dependent Scattering

It is known from atomic physics that Van-Der-Waals forces between two neutral polarizable atoms
at distance r originate from vacuum fluctuations of the quantized electromagnetic field. A fluctua-
tion of the electric field polarizes one atom, which starts radiating and polarize its neighbor. The
radiation that the first atom receives back from the second can be put into a binding energy of the
two atoms, which upon integration over the total fluctuation spectrum yields the 1/r6 (non-retarded)
Van Der Waals force and 1/r7 (retarded) Casimir-Polder force [11] [12] [13] (see Fig. 15).
From this picture it appears that the Van Der Waals force is basically due to multiple light

scattering from two point scatterers, since we pointed out earlier that a point scatterer can be
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viewed as a simple atom. We expect that a lot of quantum physics of the Van Der Waals interaction
is already contained in the classical solution for light scattering from two dielectric point scatterers
separated by a distance r. To be more precisely, it must be contained in the material part of our
solution Wpot (ω) of the two particle cluster.
The calculation of Wpot (ω) in (3.43) for one point particle in a monochromatic radiation field

with frequency ω can be straightforwardly extended to two point particles separated by a distance
r. The detailed derivation will not be given here. For the total potential energy relative to vacuum
of a pair of point scatterers we obtain the expression

W pair
pot (ω, r) = 2W 0

pot (ω)−
4π

αsph (ω/c0)
5 Im Trpol

t3 (ω)G2 (ω, r)

I− t2 (ω)G2 (ω, r)
. (4.108)

The trace is over the three polarization vectors. The first term contains the contribution of two
independent scatterers given in Eq. (3.43). The second term is the dipole-dipole binding energy.
This term without the denominator (multiplied by the vacuum expectation value of the square of
the electric field) is the one found in textbooks and describes one recurrent scattering of a “virtual”
photon between the two particles. The denominator describes higher orders of recurrent scattering,
but is important only at separations comparable to the wavelength. If r is not large compared to
the wavelength there will be three orthogonal polarization directions contributing to the trace and
not two.
Let us make the link with transport theory. In section III.D.2 we demonstrated that the transport

velocity of light in a random medium is determined by the total stored energy in the medium. The
binding energy in this random medium due to induced dipole-dipole coupling can easily be found
from Eq. (4.108) and equals

W dd
pot = −n

2 6π

αsph (ω/c0)
5 Im

∫
d3r

t3 (ω)G2 (ω, r)

I− t2 (ω)G2 (ω, r)
. (4.109)

Note that summing all orders of recurrent scattering automatically makes sure that this integral
converges at small distances, and no new divergencies are encountered for two point particles. It
can be estimated that the dipole-dipole energy becomes significant when n(ω0/c0)

3 becomes of order
unity.
The dipole-dipole binding energy must give rise to the first dependent-scattering modification

of the transport velocity in multiple scattering. Although derived here in a different way, this
conclusion can be ascertained by considering all recurrent scattering from two particles in the
transport equation [99]. Incorporating cluster scattering from two particles in a transport theory
for light thus includes the induced dipole-dipole forces between the particles. In the latter case the
light has been integrated out.

4.6.2. Reciprocity & Coherent Backscattering

Contrary to what is frequently believed, the Equation of Radiative Transfer, and thus the Boltz-
mann approximation for multiple scattering, does not obey reciprocity. In transport theory reci-
procity is often defined by interchanging the location of detector and source (both assumed dealing
with the intensity, not the complex field), and saying that the same signal should be measured.
Recalling the intensity Green’s function (4.59)
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L (x,y) = 〈〈G (x,y)G∗ (x,y)〉〉 .

Reciprocity between source and detector requires L (x,y) = L (y,x) . However, this is necessary
but not sufficient. In principle four positions enter this vertex,

L (x,y,x′,y′) = 〈〈G (x,y)G∗ (x′,y′)〉〉 ,

and reciprocity of the underlying wave equation requires that,

L (x,y,x′,y′) = L (y,x,y′,x′) = L (y,x,x′,y′) . (4.110)

In vector scattering L becomes a tensor of rank four with additional symmetry [44]. Expressed in
Fourier and Laplace variables the operator L manifests itself as Φω,pp′ (Ω,q) defined in Eq. (4.63).
Reciprocity for this object amounts to [92],

Φω,pp′ (Ω,q) = Φω,−p′,−p (Ω,−q) = Φ
ω,p−p

′+q
2

,p
′−p+q
2

(Ω,p+ p′) . (4.111)

In the first equality of (4.110) and (4.111) the wave and its complex conjugate have both been turned
around, which corresponds to interchanging detector and source. Only this identity is satisfied by
the Equation of Radiative Transfer.
The second equality is not obeyed by ordinary Boltzmann theory. It corresponds to only turning

around the path propagated by the wave itself, but keeping the track fixed of its complex conjugate.
Obviously we are now speaking about an interference contribution, which is only possible for waves,
not for particles. In the Boltzmann approximation the wave and its complex conjugate travel the
same path. Apparently, inclusion of interference is necessary to restore reciprocity.
Reciprocity can be repaired by including the interference of every path with its time-reversed

counterpart, and so extend Boltzmann theory. The physical consequences of the very existence of
reciprocity in the underlying wave equations are enormous. At exact backscattering from a random
sample it can be easily be shown that the interference of two counter propagating is constructive
(Fig. 16) and, by the second reciprocity equality, exactly equal to the value obtained from the
Equation of Radiative Transfer. At backscattering, Boltzmann theory is thus a factor of two wrong
[100].
This factor of two does not persist away from the exact backscattering direction, since the interfer-

ence will dephase. What remains is a sharp peak at backscattering, called Coherent Backscattering.
The angular width of this peak equals the wavelength divided by the transport mean free path :

∆θ ≈
λ

2π�tr
=

1

k�tr
. (4.112)

The Coherent Backscattering effect has been observed experimentally in light scattering [101] [102]
[103] [104] [105] (Fig. 17). It is the first direct experimental evidence that Boltzmann theory and the
associated Equation of Radiative Transfer are incomplete for light, and that interference persists in
multiple scattering.
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4.6.3. Excluded Volume & Lorentz Cavity

Atoms have a much smaller size than their scattering length. So contrary to random dielectric
samples, condensed matter can contain hundreds of atoms per optical volume λ3. The role of depen-
dent scattering may be expected to be enormous, but the role of pair correlation may be expected
to be negligible. In what follows we will argue exactly the opposite.
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FIG. 16. The principle of Coherent Backscattering. It consists of the interference of two waves in opposite direction, along the

same path. At backscattering the interference is always constructive, and by reciprocity arguments equal to the conventional background

given by the theory of radiative transport. At angle θ > 1/k% the signal dephases rapidly.
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FIG. 17. A measurement of coherent backscattering from a random medium, done with circularly polarized light with vac-

uum wavelength λ = 632.8 nm. The backscattered intensity is plotted against the scattering angle where zero corresponds to exact

backscattering. The sample is BaSO4 with a transport mean free path of about 2.1 µm (Taken from Ref. [15]).

The Lorentz cavity was originally introduced by H.A. Lorentz in 1880 to give an atom an excluded
volume [80]. Lorentz showed that propagation of light is influenced by the polarizability of the
atoms. The presence of the atoms changes the effective medium dielectric constant which in turn
determines the speed of light. The introduction of an infinitesimally small cavity around each atom
does not give the “independent scattering result given in Eq. ( 4.21), but automatically yields the
Lorentz-Lorenz formula (4.8). Apparently, an infinitesimally small pair correlation provides a severe
modification in the dielectric constant.
Let us verify this statement in Dyson’s equation. To this end, we first find the Helmholtz Green’s

function in real space by Fourier transformation (k = ω/c0),

G0 (ω, r) =
∑
p

[
p̂p̂

(ω/c0)
2 +

∆p

(ω/c0)
2 + iε− p2

]
eip·r

= −
eikr

4πr
[P (kr)∆r +Q (kr) r̂r̂] +

I

3 (ω/c0)
2 δ (r) . (4.113)

The delta-function is a very subtle feature. Its presence can best be verified by the observation
G0 (ω,p = 0) = c20/ω

2 must equal the space integral of G0 (ω, r) . Outside a point source it will
never play a role and is for that reason often ignored and perhaps even forgotten. In that case
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the functions P and Q determine the electric field vector perpendicular and along the axis r̂ of
propagation,

P (y) = 1−
1

iy
−

1

y2
,

Q (y) = 2

(
1

iy
+

1

y2

)
. (4.114)

Correlation in the Dyson self energy can be included by the notion that any contribution must be
connected. The connected structure can either be due to recurrent scattering from one scatterer
(dependent scattering) or to correlation between two or more particles (as may perhaps be familiar
from linked cluster expansions in the statistical mechanics of the equation of state). Pair correlation
between two particles 1 and 2 is described by a pair correlation function h(r12). In the simple case
of exclude volume,

h (r) =

{
−1 r < a
0 r > a

. (4.115)

In the following we introduce a Lorentz cavity with size a around each atom and finally take the
limit a → 0. The pair correlation contribution of two identical point particles to the self energy is
given by [70],〈

p1

∣∣∣Σ(2)
corr (ω)

∣∣∣p2

〉
= n2

∫
d3r1

∫
d3r2 t (ω)h(r12)G0 (ω, r12) t (ω) exp (−ip1 · r1 + ip2 · r2) .

A factor (2π)3
δ (p1 − p2) can be split off by translational symmetry. For a very small cavity only

the delta function in the vacuum Helmholtz Green’s function (4.113) contributes. This gives,

Σ(2)
corr (ω,p) = −

1

3

n2t (ω)2

(ω/c0)
2 = (ω/c0)

2
{
−
1

3
n2α (ω)2

}
.

We recall that the relation between polarizability α (ω) and t-matrix is given in Eq. (3.28). Cor-
relations between three and more particles can be acknowledged similarly: For three particles we
require that the joint distribution vanishes if the three particles are in the same Lorentz cavity. In
this way we find a geometric series. We obtain for the dielectric function,

ε (ω,p)→ 1 + nα (ω) +
1

3
n2α (ω)2 +

(
1

3

)2

n3α (ω)3 + · · · = 1 +
nα (ω)

1− 1
3
nα (ω)

. (4.116)

This is the Lorentz-Lorenz formula. It follows rigorously from multiple scattering theory when all
dependent scattering is neglected and excluded volume is incorporated by means of the Lorentz
cavity. It is a genuine vector effect, and is absent for scalar waves. We want to make two comments
to this result.
Firstly, many textbooks3 introduce a macroscopic artificial Lorentz cavity containing many atoms.

Next, they calculate how the electrostatic field inside is influenced by surface charges, thereby

3An exception is the book Principles of Optics by Born and Wolf [39], where an exact microscopic deriva-

tion can be found. This is heavy reading.
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introducing a local field. This treatment is correct for ω = 0, that is in electrostatics. It will never
be able to find the Lorentz-Lorenz formula for propagating waves since one needs ω �= 0 to address
travelling waves. As such the original microscopic argument of Lorentz is often destroyed by an
oversimplified picture.
Secondly, one might pose the question when the neglect of dependent scattering can be justified.

If the atoms scatter light inelastically (a < 1), as is often the case, recurrent scattering will be
suppressed considerably as has been pointed in Eq. (4.107). In that case the Lorentz-Lorenz formula
seems all-right. If on the other hand the objects scatter light purely elastically (a = 1), the Lorentz-
Lorenz formula is nothing more than one among other effective medium approximations. This
means that in the regime where the Lorentz-Lorenz formula gives results different from independent
scattering calculations, various other corrections can be shown to be of the same order of magnitude
[106].

4.6.4. Anderson Localization of Light

The phenomenon of Anderson localization was first introduced in 1958 by P.W. Anderson in his
famous paper [4]. After this publication an explosion of literature appeared on the subject. The
message was that the quantum nature of the electron may cause it to be localized in space when
disorder is present. In that case diffusion and conductivity will vanish and the substance turns into
an isolator [107].
It is an interesting question whether this phenomenon can be sought in a transport theory going

beyond the Boltzmann approximation. Normal Boltzmann theory is known to give long range diffu-
sion. We want to discuss localization briefly as a phenomenon that nicely illustrates our preceding
discussions about the difference between amplitude and intensity. In addition, we want to rephrase
the ideas behind Anderson localization in such a form that it can be unambiguously applied to RMS
of light.
Localization was originally defined as the vanishing of the DC conductivity, because that was the

quantity measured in the laboratory [31]. Let us therefore recall that the “light conductance” was
defined in section IV.E as the all-channel transmittance T (ω). For a slab with thickness L and
surface A it is obtained from,

T (ω)
L

A
=W (ω)×D (ω) ∼W (ω)× vE (ω)× �tr (ω) . (4.117)

It is the product of the density of states and the diffusion constant. The diffusion coefficient
factorizes in turn into a transport velocity and a transport mean free path. All four quantities, T ,
vE, W , and �tr can in principle be measured but for light T (ω) is the most difficult one to measure
(for electrons the simplest because they are located on the Fermi surface so that all channels are
automatically occupied). Since any of these factors can be “small” this raises the question which of
them contains the real localization.
We have seen that in RMS of light the velocity can be very small. However, in section III.E

we noticed that the suppression of the transport velocity is compensated by the large material
component of the density of states. With this cancellation included, the DC conductance takes the
form,

T (ω)
L

A
∼Wrad (ω)×

1

vp

�tr (ω) ∼

(
Wrad (ω)

W0 (ω)

)2

× �tr . (4.118)
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This formula shows explicitly that the suppression of the transport velocity should not be categorized
as localization, although it suppresses the diffusion constant. Indeed, small diffusion constants
reported in optical experiments could be attributed to small velocities and not to localization [20]
[108]. It further leaves us with two possible mechanisms for light localization: a vanishing of the
transport mean free path, and a vanishing of the radiation density. The difference between both
cases becomes very clear by realizing that the transport mean free path is a property of the average
intensity. The density of states of the travelling waves, the radiation density, concerns the average
amplitude. The amplitude is only subject to superposition, but in the intensity the wave and its
complex conjugate are allowed to interfere. Theoretically it turns out that in disordered media only
interference is capable of generating a genuine vanishing of Eq. (4.118) in an infinite medium:

�tr (ω) = 0 . (4.119)

A transport theory of localization was developed by W. Götze [109], P. Wölfle and D. Vollhardt [92]
[110] at the end of the seventies. It emphasizes the role of interference in transport phenomena, and
puts forward the weak localization effect discussed in section IV.F.2 as a possible basic mechanism.
The criterion for localization found in this theory for an infinite random medium (in three dimensions
with purely elastic isotropic scattering) turns out to be,

�tr = 0 when k�scat � 1 . (4.120)

The second mechanism to obtain a small transmission remains nevertheless interesting to pay
attention to. If we recall the results of section III.C.1,

Wrad

W0
� 1 when k�ext �

1

2
(4.121)

This criterion is remarkably close to the one of localization. It is for this reason that both criteria
are frequently confused, and that criterion (4.52) is frequently misused as a criterion for localization.
The difference becomes immediately clear by applying both criteria to a system with absorption.
In that case one can still satisfy k�ext �

1
2
, but no longer the localization criterion (4.119).
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