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We treat the effect of internal reflection of the propagation of waves in strongly scattering media. The theory will be applied to 
the recently discovered phenomenon of coherent backscattering of light and to the time-dependent transport of light intensity in 
reflection and in transmission geometries. For backscattering and for transmission through relatively thin slabs the influence of 
internal reflection can be very strong. For transmission through relatively thick slabs the effect can be accounted for by renormal- 
izing the diffusion coefficient with a length-scale dependent reduction factor. 

1. Introduction 

At present the interest in multiple scattering of 
waves in random media has undergone a tremen- 
dous revival. One of the reasons for this renewed at- 
tention is the possibility of observing Anderson lo- 
calization in classical systems. More generally one 
can say that the curiosity concerns the observation 
of interference effects in multiple scattering [ 1-3 1. 
The observation of enhanced backscattering is one 
manner to probe the building up of multiple-scat- 
tering interference in these media [4-91. Its con- 
nection with localization of light is so intimate that 
the label weak localization was given to it. Nowadays 
one refers to localization of light as strong localiza- 
tion. The study of the enhanced backscattering has 
become a powerful way of monitoring interference 
in multiple scattering in great detail [ 10,111. 

The most direct method of observing strong lo- 
i calization seems the experimental determination of 

the diffusion coefficient. Within the framework of 
localization the influence of interference will bring 
about a reduction (and length-scale dependence) of 
the diffusion coefficient with respect to the bare 
"Boltzmann" value. The investigation of diffusive 
transport, either in transmission or in reflection ge- 
ometries, is a direct means of inferring the diffusion 

coefficient from experiment [ 10- 141. Recently time- 
dependent studies of the enhanced backscattering and 
depolarization of light has been reported [ 15 1. 

Another, elegant, way of deducing the diffusion 
constant from experiment is the measurement of in- 
tensity-intensity correlation functions either in the 
time domain or in the frequency domain [ 16- 18 1. 

In the majority of the novel experiments the inter- 
pretation is performed with the help of diffusion the- 
ories. Only in the work of van der Mark et al. [ l o ]  
a rigorous theory beyond the diffusion assumption 
was developed and worked out in detail. This theory 
describes static transport only but the results make 
clear that the diffusion theory with the appropriate 
situation of trapping planes [ 13,19,20] constitutes 
a surprisingly good description. Light is a vector wave 
and recently a diffusion theory for Rayleigh scatter- 
ing has been presented [2 1,221. 

In all the models up to now the following restric- 
tive assumption on the boundary condition was 
adopted: when the light diffuses to the boundary it 
will escape with probability one. This allows one to 
use the simplifying reflection principle in the cal- 
culation of Green functions [20]. The experimental 
optimization of the multiple scattering in these types 
of materials requires the maximization of the con- 
trast in index of refraction in the medium. This re- 
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sults usually in a situation in which the average in- 
dex of refraction in the medium differs considerably 
from the index of refraction of the outside world and 
as such causing internal (and external) reflection at 
the boundaries. Our estimate is that in strongly scat- 
tering media the internal reflection coefficient could 
be as high as 0.85. This urges the question to what 
extent does this finite reflectivity influence the dy- 
namics of the propagation. 

In this paper we will present a dynamic scalar dif- 
fusion theory with incorporation of the effect of in- 
ternal reflection. We will first give results for the time- 
dependent Green function for semi-infinite and fi- 
nite slabs. In addition we will use these Green func- 
tions to calculate how much coherent backscattering 
and diffusive transport, in reflection and transmis- 
sion, is affected by the existence of internal reflec- 
tion. In comparison with experiment one should re- 
alize that the simplifying assumption has been 
introduced of a reflectivity independent of angle. This 
is not true in general but this model will describe the 
real situation very reliably. This has been checked by 
using anisotropic reflectivities in computer simula- 
tions. For experiments requiring backscattering ge- 
ometries, like coherent backscattering and time-re- 
solved incoherent backscattering, it turns out that 
internal reflection seriously modifies the outcome. 
In transmission experiments the significance of the 
corrections depends on the thickness of the slab (in 
units of mean free path) and the influence disap- 
pears for very thick slabs. Of course the overall ab- 
solute intensities are always seriously affected by fi- 
nite reflection coefficients. The well-known limits of 
zero and total internal reflection are easily recovered 
in our approach. 

play an eminent role in this mixed boundary 
condition. 

The simplest way to derive the boundary condi- 
tion is to resort to the discrete 1D random walk and 
take the continuum limit, see for instance ref. [23]. 
The outcome is the boundary condition 

where G(z2, z,; t) represents the Green function 
obeying the 1D diffusion equation in the semi-infi- 
nite medium (z>O), and where E R / ( ~  -R) R /  
T describes the internal reflection at the z = 0 +  
boundary with reflectivity R. 

The method of calculating the Green function is 
the standard expansion in eigenfunctions [23]. For 
the particular case of a semi-infinite slab the Green 
function can be obtained in closed form and, under 
the condition that G(z2, z,; t=O) =6(z,-zl)6(t), is 
given by 

Xexp[ - (z2 +z, )2/4Dt] , (2)  

in which 

where D is the diffusion coefficient and erf denotes 
the error function [24]. As can easily be checked in 
two limits R =  0 and R =  1, in which case the Green 
function will be denoted by GO(z,, z,; t), the "im- 
age" results are reproduced: 

2. Semi-infinite slab G0(z2,z,;t)=G(z2-z,;t)~G(~2+~,;t), (4)  

where 
It is well known that for vanishing or total internal 1 

reflection the Dirichlet or the Neumann boundary G(z; t) = - Wt ~ X P (  -z214Dt) (5)  
conditions apply respectively to the Green function 
obeying a diffusion equation with open boundary represents the Green function for the infinite me- 
conditions [20]. To obtain the intermediate bound- dium. The plus sign in eq. (4) corresponds to total 
ary condition is more complex. One expects it to be internal reflection and the minus sign to vanishing 
of the mixed type, and one would anticipate the only internal reflection. From eq. (2) one concludes that, 
length scale, the (transport) mean free path ,Imf, to unless R =  1, the long-time behavior will be propor- 
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tional to tm3I2. It is not straightforward to describe 

1 the R # 0 Green function in terms of the R = 0 Green 
\ function with a renormalized diffusion constant. It 

will turn out that in the description of incoherent light 
transport in reflection an important quantity will be 
G (A,, A,(, t ) . Analysis of the long-time behavior of 
eq. (2 )  demonstrates that for this particular quan- 
tity the diffusion coefficient can be renormalized as 

The apparent reduction of the actual diffusion coef- 
ficient mimics the longer stay of the light in the sam- 
ple due to reflection. 

3. Finite slab 

The slab will be situated between 0 < z<  L. The 
boundary condition, as given by expression ( 1 ), has 
to be applied twice, at z=0+ and (with opposite 
sign! ) at z= L-.  The result is an eigenvalue equation 
for the allowed wave numbers: 

flection. In lowest order the result for the set of wave 
numbers {k) is given by 

This already indicates that a part of the influence of 
a finite reflectivity could be incorporated by assum- 
ing R = 0 and renormalizing the diffusion coefficient 
by 

For the case of R = 1 or R = 0 the eigenvectors are 
known and D is independent of the slab thickness. 
In that case the dynamic Green functions can be pre- 
sented as a simple series: 

X exp ( - n2Dq2t/L') . (14) 

This series applies to the R = 0 case. For R = 1 the 
same solution applies when replacing the sine func- 
tions by cosine functions. For numerical purpose it 

2eAmfk might be useful to apply the Poisson summation rule tan(kL) = 
(EA, ,~)~-  1 ' ( 7 )  to this result and transform to an expansion useful 

for short times: 
The normalized eigenvectors are given by 

tan qk = &Amfk , (9)  

Using an eigenfunction expansion the Green func- 
tion G(z2, z,; t)  is given by 

The solution ( 1 1 ) can easily be determined numer- 
ically. Care should be taken to use at short times 
many eigenvectors to ensure convergence. 

From summation ( 1 1 ) it can easily be deduced 
that the long-time behavior is determined by the 
lowest eigenvalues and the decay will eventually be 
described with a single exponential, corresponding 
to the lowest eigenvalue. It is practical to develop a 
perturbation expression for these eigenvalues to get 
an idea of the importance of the effect of internal re- 

When one compares this result with eq. (4 )  the oc- 
currence of multiple images is clearly demonstrated. 
Interestingly enough it is apparently not possible to 
derive the mixed situation with the method of images. 

At this point it is important to pay attention to the 
validity of the diffusion equation. The rigorous the- 
ory describing incoherent scalar wave transport for 
R = 0 is the Milne equation [ 10,13,19]. Applying the 
diffusion approximation to the Milne equation not 
only gives the correct diffusion result but in addition 
it allows optimization of the boundary conditions in 
the diffusion framework so as to mimic the rigorous 
result optimally. From this procedure one finds the 
presence of trapping planes not coinciding with the 
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exact boundary but located slightly outside the phys- 
ical boundary. This can be allowed for by introduc- 
ing the "apparent" width L* r L + 2zdm, This 
boundary condition improves the quality of the dif- 
fusion approximation considerably. One should re- 
alize that the location of the trapping plane should 
depend on R. For R=O the Milne equation gives 
zo z 0.7 1 [ 19,201. At R = 1 one expects the reflection 
plane to coincide with the physical boundary. The 
quantitative results presented in this paper are only 
slightly influenced by a different location of the trap- 
ping planes. 

4. Enhanced backscattering 

Enhanced backscattering is the phenomenon that, 
no matter how many multiple-scattering events are 
participating, at exactly the backscattering direction 
there will be constructive interference between time- 
reversed events in random media. This interference 
will diminish at directions away from the backscat- 
ter directions (finite perpendicular momentum 
transfer) and the width is determined by the mean 
free path, Amf, and the wavelength, 1. 

To describe weak localization the Green function 
should allow for perpendicular momentum transfer. 
The relevant 3D Green function for enhanced back- 
scattering [9,10,25 ] 

in which k ,  is the perpendicular momentum trans- 
fer. For the present purpose it is sufficient to limit 
the discussion to increased backscattering for a semi- 
infinite slab. Using eq. ( 2 )  and introducing trapping 
planes results after integrating eq. ( 16) over time in 

This equation reproduces the correct R = 1 and R = 0 
results. 

To obtain the intensity for the enhanced back- 

scattering one has to sum the contributions of time- 
reversed events (most-crossed or cyclical diagrams) 
and one has to account for the incoming and out- 
going waves. This has been treated in detail in the 
recent literature [9,10,2 1,22,25 1. The result for the 
bistatic coherent scattering coefficient related to en- 
hanced backscattering [ 121 is given by 

Xexp -- - + -  ( z2+z1 )  , [ 2 i I (18) 

in which c is the speed of light, ko= 2n/A, and pi, p, 
are the cosines of respectively the incoming direc- 
tion Oi and outgoing (scattered) direction 8,, and R" 
is the (external) reflectivity for incoming waves. 
Substituting eq. ( 17) in this expression leads after 
some algebra to the following result, assuming Bi = 0 
and dS = 8: 

2av + - exp ( - 2az0) 
&+a 

In fig. 1 we show the intensity as a function of angle 
around the backscattering direction ("backscatter 
cones") for varying internal reflection. In fig. 2 the 
dependence of the width (fwhm) of the backscatter 
cone is given as a function of the reflectivity. To show 
the mild dependence on the location of the trapping 
plane we have presented the results for two different 
locations of the trapping plane (zo = 0.7 1, appropri- 
ate for R = 0 and zo = 0, appropriate for R = 1 ). All 
the results show a dramatic influence on the pres- 
ence of internal reflection. 



Volume 136, number 1,2 PHYSICS LETTERS A 20 March 1989 

1 . 0 ~  , I I 5. Transport in reflection 
i i  
/ 

! X 
,% 0.8 

The description of time-dependent incoherent 
v, 2 R = 0.3 

1 r 
transport ('ladder diagrams') in reflection from a 

a, 
-I-, 

3 R = 0.6 semi-infinite slab can easily be done within the 
.f 0.6 4 R = 0.9 framework of the diffusion theory. The spreading of 
73 
a, 

an initial delta-function pulse is easily shown to be 
N . - given by 

0.4 

E 
I 

C 

o YQ(P%, A;  t ) =  7 ( I - R ) ( ~ - R )  
r 0.2 ~ I A r n f  

X dz2 dzl G ( z ~ , z ~ ,  kl =O; t )  
0.0 

-0.4 -0.2 0 . 0  0.2 0.4 
I 0 I 0 

@h",f/h ( rad)  
Fig. 1. Computed angular dependence of the (normalized) en- 
hanced backscattering intensity for various values of the internal 
reflectivity. 

Fig. 2. Computed width (fwhm) of the enhanced backscattering 
as a function of the internal reflectivity R. The fwhm for R=O is 
x0.7A/2nlmf [ l o ] .  

The fact that the cone becomes narrower on in- 
creasing R can easily be understood. The influence 

F of finite reflectivity is to force the light paths in the 
sample to be longer. But longer light paths get out of 
phase easier and consequently the backscattering cone 
becomes narrower. 

xexp ---&), ~ i A r n f  fis~mf ( z1 

in which the time-dependent propagation of the in- 
coming wave has been neglected. Akkermans et al. 
[9]  have shown that the double integral in this equa- 
tion can be approximated by 

The expression in the r.h.s. of eq. (2  1 ) was obtained 
by using a Taylor expansion. The introduction of 
these simplifications is not absolutely necessary but 
as we have checked that the more rigorous theory 
does not give rise to important corrections we will 
stick to these appealing simplifications. 

In fig. 3 we display several of our results for the 
time-dependent incoherent backscattering intensity 
(spreading in time of an incoming wave) for various 
values of the internal reflection coefficient. Clearly 
can be seen that a finite reflectivity induces a much 
stronger (relative) intensity at longer times. The 
R # 0 results can be fit numerically into R = 0 theory 
results over the whole time domain by introducing 
a renormalization of the diffusion coefficient. In ta- 
ble 1 we give the results obtained with this overall fit 
and compare them with the results obtained from 
perturbation theory (see eq. ( 6 )  ), supposed to be 
valid for long times. The apparent reduction of the 
diffusion constant can easily be understood. The ef- 
fect of internal reflection is to keep the light longer 
in the medium. In an R=O theory this can only be 
achieved by reducing the diffusion coefficient. 
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Fig. 3. Calculated dynamic pulse profile in reflection from a semi- Fig. 4. Calculated dynamic pulse profile in transmission for var- 
infinite slab for various values of the internal reflection coeffi- ious values of the internal reflectivity. Time is in units of tmf= 
cient. The instantaneous response at t=O should be convoluted Imr/c. 
in practice with the incoming pulse profile. Time is in units of 
t-V= I-Jc.  of the Anderson transition. For this reason under- .... .... 

Table 1 

standing of the present effect is crucial. Having the 
Green functions at our disposal the transmitted in- 

Renormalization of diffusion constant in reflection. tensity is easily shown to be given by 

L/Amr R D*/D "' D*/D b, 

100 0 1 1 
100 0.3 0.8 0.62 
100 0.6 0.3 0.30 
100 0.9 0.07 0.046 
500 0 1 1 
500 0.3 0.8 0.62 
500 0.6 0.3 0.30 
500 0.9 0.07 0.046 

a '  Numerical fit. 
b, Perturbation (see eq. ( 6 )  ). 

6. Transmission 

Transmission experiments -are very important as 
it is to be expected that the experimental evidence 
for localization will come from this type of experi- 
ments. The canonical experiment is to propagate a 
short pulse through the medium and to measure the 
spreading of the transmitted pulse in the time do- 
main. The diffusion coefficient can be inferred from 
this experiment. The neglect of finite internal re- 
flection could lead to serious errors in the determi- 
nation of the actual diffusion coefficient and as such 
could lead to wrong conclusions about the proximity 

This equation is derived under the same conditions 
as those of eq. (2 1 ). In fig. 4 we display several of 
our results for the time-dependent incoherent trans- 
mitted intensity (spreading in time of an incoming 
wave) for various values of the internal reflection 
coefficient. Clearly can be seen that a finite reflec- 
tivity induces a much stronger (relative) intensity at 
longer times. The R # 0 results can be fit into R = 0 
results by introducing a renormalization of the dif- 
fusion coefficient. In table 2 we give the results which 
compare favorably with the results obtained from 
perturbation theory (see eq. ( 13 ) ). 

7. Absorption 

Up to now we have neglected the presence of ab- 
sorption. The inclusion in the theory is rather trivial. 
In the time-dependent version one only includes an 
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Table 2 fluence of internal reflection. Also in other experi- 
J Renormalization of diffusion constant in transmission. ments where reflection geometries are used or where - 

L/J.mr R D*/D ") D*lD b '  
transmission through relatively thin samples is stud- 

1 ied, including fluctuation experiments, the influence 
3 

100 0 1 1 of internal reflection could be sizeable. 
100 0.3 0.98 0.98 
100 0.6 0.94 0.94 
100 0.9 0.74 0.64 
500 o I 1 9. Conclusion 
500 0.3 1 .OO 1 .OO 
500 0.6 0.99 0.99 
500 0.9 0.93 0.93 

") Numerical fit. 
Perturbation (see eq. ( 13 ) ). 

exponential damping factor exp ( - tlz,), containing 
the inelastic time z,. In the static Green function the 
result can easily be modified as to include absorp- 
tion. One can replace a in the appropriate equations 
by 

in which a is the albedo. The fitting of our results by 
introducing reduced diffusion coefficients has shown 
that these results are only slightly influenced by the 
presence of absorption, although the overall curve is 
of course strongly influenced by the presence of 
absorption. 

8. Consequences 

I The theory presented in this paper leads to im- 
portant corrections to earlier approaches when size- 
able internal reflection occurs. The occurrence of in- 
ternal reflection can be circumvented by matching of 
index of refraction. Experiments with liquid samples 
usually involves the use of transparent glass windows 
in order to contain the sample and let the light 
through. For these experiments the corrections for 
internal reflection is probably not important. On the 

t other hand experiments with strongly scattering solid 
samples, like titania, can be seriously affected by the 
effect of internal reflection. For these materials the 

In this paper we have shown that in experiments 
where transport of waves in strongly scattering me- 
dia is studied the presence of finite internal reflec- 
tivity can be very important. We have calculated all 
the relevant Green functions and have computed the 
influence for typical experimental conditions. The 
result is effectively a reduction of the diffusion coef- 
ficient. In the case of transmission this reduction de- 
pends on the thickness of the slab and thus leads to 
a (trivial) length-scale dependence of the diffusion 
constant. With the theory presented in this paper 
other experimental situations can easily be consid- 
ered as the numerical calculations are straightfor- 
ward. 
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