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Abstract: We investigate the potential of mutual scattering, i.e., light scattering with multiple
properly phased incident beams, as a method to extract structural information from inside an
opaque object. In particular, we study how sensitively the displacement of a single scatterer is
detected in an optically dense sample of many (up to N = 1000) similar scatterers. By performing
exact calculations on ensembles of many point scatterers, we compare the mutual scattering
(from two beams) and the well-known differential cross-section (from one beam) in response to
the change of location of a single dipole inside a configuration of randomly distributed similar
dipoles. Our numerical examples show that mutual scattering provides speckle patterns with
an angular sensitivity at least 10 times higher than the traditional one-beam techniques. By
studying the “sensitivity” of mutual scattering, we demonstrate the possibility to determine
the original depth relative to the incident surface of the displaced dipole in an opaque sample.
Furthermore, we show that mutual scattering offers a new approach to determine the complex
scattering amplitude.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Traditional scattering experiments are associated with sending a single beam of waves to a target
[1–4]. If the target interacts only weakly with the incoming waves, as is typical for X-ray and
light scattering [1–4], the detailed structure of the target including the positions of constituting
particles can be retrieved from the characteristics of the scattered waves. If a medium interacts
more strongly with the waves [5,6], it becomes increasingly opaque, hence the usual single
scattering approaches break down, and only limited structural information can be retrieved by
methods such as diffusion wave spectroscopy [7–9]. Beyond the traditional case of a single
incident wave [1–4], the recent development of multiple-beam techniques such as wavefront
shaping [10–12] has allowed focusing light inside scattering media [13–15] and opened the new
potential for research of extracting information from strongly interacting opaque samples [16].
However, the application of wavefront shaping on finite-size objects [17] is still a new field that
needs to be explored to its full potential.

Recently, it was realized that interference of multiple incident beams gives rise to a new
scattering phenomenon, called mutual scattering [18]. From a generalized optical theorem, it
follows that the total extinction of even only two incident waves is either greatly enhanced by up to
100% compared to the usual single-beam extinction, which is called mutual extinction, or greatly
reduced, which is called mutual transparency. Subsequently, the experimental demonstration of
mutual scattering has been made for biological, silicon, and carbon samples [19].

Following the theoretical and experimental demonstration, we explore here a new practical
application of mutual scattering, namely: How sensitive is mutual scattering to detecting the
displacement of a single nanoparticle deep inside a finite sample with an ensemble of many (up
to 1000) similar nanoparticles? In other words, the nanoparticle we wish to track is not a tracer
particle with properties different from the ensemble, like a dyed nanosphere standing out in a
sea of undyed ones [20]. The underlying hypothesis is that the cross-interference of two beams
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is more sensitive to changes of a scatterer located deep within the sample than conventional
scattering methods. An enhanced sensitivity would boost the potential of mutual scattering for
applications in biomedical imaging inside tissue, in semiconductor metrology, in communications
for non-line-of-sight links [21], or in the study of the structure of free-form samples [22,23].

In addition, we will also show that mutual scattering allows one to extract the modulus and
imaginary part of the scattering amplitude in an experiment. By combining this new information
with the traditional one-beam scattering, we obtain the complex scattering amplitude at all angles,
while this was up to now only possible for forward scattering [24]. In other words, the mutual
scattering of multiple beams is an interferometric technique to measure both the amplitude and
phase of the complex scattering amplitudes.

2. Schematic of mutual scattering

To study the characteristics of mutual scattering, we introduce the sample geometry consisting of
a box-like object as shown in Fig. 1. The sample has thus finite support in three dimensions (3D)
[25]. We illuminate the left side of the sample with two incident beams with wave vectors kin,1
and kin,2 such that |kin,1 | = |kin,2 | = k, and with equal amplitudes A1 = A2 = A. The incident
plane is chosen to be perpendicular to the x-axis. The angles of incidence of these two beams,
denoted γ1 and γ2, respectively, are defined as the angles between the z-axis and kin,1 or kin,2.
The two incident beams subtend an angle γ = γ1 + γ2. After emanating from the right of the
sample and experiencing a certain mutual scattering, the two beams propagate to two detectors
located at A and B. Detector A measures the mutual scattering FMS

1 (γ) along kin,1, and detector
B measures FMS

2 (γ), see the Appendix for details.

Fig. 1. Schematic of mutual scattering: the sample (white box) at the center is illuminated
from the left by two incident (purple and orange) plane waves. The interference between
the incident plane waves and the scattered spherical waves of different colors, observed at
detectors A or B, gives rise to the mutual scattering phenomena.

To model the optical properties of opaque objects, we consider an ensemble of Ndipole
scatterers, shown in Figs. 2(a),(b), that are randomly distributed in a rectangular box with a
volume V = 4 × 4 × 4 λ3, with λ the wavelength of light. Here the cube is chosen instead of the
sphere to highlight the distinction between the effects of the first and second beams. The scatterers
are dipoles, whose optical properties are described in Appendix 8.4, where their interaction
strength with light [5,6] is illustrated by the volume of the polarizability spheres in Figs. 2(a),(b).
The sample in Fig. 2(a) holds N = 1000 scatterers and has a substantial photonic strength that
corresponds to a mean free path less than the wavelength lscat/λ = 0.2011 or less than the sample
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dimensions V1/3/lscat = 20, typical of a highly opaque sample. The sample in Fig. 2(b) interacts
less strongly with light, as it has lscat/λ = 0.8044 or V1/3/lscat = 5 and is thus still opaque.

Fig. 2. Schematic of the numerical samples: (a) A cube with Ndipole = 1000 dipoles, and
(b) a cube with Ndipole = 250 dipoles, whose polarizability is shown by the extent of the
blue spheres. The target dipole (red sphere) at position r0 is moved along a chosen direction,
for example, the blue line shows the movement of the red scatterer in the x-direction, while
the positions of all other (Ndipole − 1) scatterers are preserved.

To compute the scattering amplitude of the sample, we must compute the exact evaluation of
the T-matrix of many scatterers, see Appendix 8.4 for more details. The scattering amplitude f is
obtained from

f (kout, kin) = −
1

4π
T(kout, kin), (1)

where T(kout, kin) is the transition matrix or T-matrix in scattering theory [26].
We note aside that when the sample is opaque and significantly larger than the wavelength, the

scattering amplitude is accurately described with Fraunhofer diffraction theory [27], as shown in
Ref. [19]. However, since the sample is considered to be impenetrable in this description, this
approximation is not helpful to study the internal structure.

3. Results I - Mutual scattering of static configuration

We study the properties of mutual scattering in response to varying the static configuration of the
sample. We start with an ensemble of Ndipole = 250 dipoles randomly distributed in a rectangular
box and create new configurations by randomly changing the positions of all dipoles.

3.1. Symmetric incident beams

Based on the theory in Eq. (15), we find that the mutual scattering depends on the phase difference
(ϕ1 − ϕ2) between two beams. By tuning the phase difference, we obtain the maximum and
minimum mutual scattering for each angle of incidence γ between the two incident beams.

We start with the symmetric case, where the two incident beams with mutual angle γ
symmetrically illuminate the sample, such that the angles of incidence of both beam 1 and beam
2 are equal to γ/2. For each sample configuration, the mutual scattering amplitudes FMS

1 and
FMS

2 are not equal because a single random structure is always asymmetric. If we average the
mutual scattering over many configurations, however, the statistics of the mutual scattering of
beam 1 and beam 2 and the mutual scattering of both beams will be the same:

⟨FMS
1 ⟩ = ⟨FMS

2 ⟩ = ⟨FMS
12 ⟩, (2)

where the notation ⟨x⟩ represents the average (mean) value of x calculated over Nrealization
realizations. Therefore, we will show only the result of FMS

12 in this symmetric case.
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Figure 3 shows the statistics of the maximum and minimum mutual scattering, denoted by FMS
max

and FMS
min, respectively, as a function of angle γ between the two incident beams for Ndipole = 250.

The results are calculated based on Nrealization = 1000 realizations of different configurations of
the location of scatterers. Figure 3(a) shows both the average value of the maximum ⟨FMS

max⟩ and
minimum mutual scattering ⟨FMS

min⟩ over all the realizations as functions of angle γ. The average
value of the forward-scattering of both beams ⟨Fforward

12 (γ)⟩ is given by

⟨Fforward
12 (γ)⟩ =

⟨FMS
max(γ)⟩ + ⟨FMS

min(γ)⟩

2
. (3)

At γ = 0◦, the forward-scattering equals 1, increases gradually and peaks at γ = 90◦, when the
incident angles of two beams equal 45◦ . The average maximum and minimum mutual scattering,
i.e., ⟨FMS

max(γ)⟩ and ⟨FMS
min(γ)⟩, have a shape like a sine cardinal function near ⟨Fforward

12 (γ)⟩. At
small angles, the mutual scattering is strong, with modulations up to 100%. The mutual scattering
quickly decreases with increasing angle, being up to 20% at γ = 20◦ and then further decreasing.
The maximum and minimum mutual scattering vary according to the distribution of scatterers
inside the box.

Fig. 3. Mutual scattering FMS
12 for Ndipole = 250 with respect to angle γ between two

symmetric incident beams. The results are averaged over Nrealization = 1000 realizations of
different configurations of the location of dipoles. (a) The blue and orange lines correspond
to the maximum and minimum scattering obtained from phase variations, respectively. The
average self-extinction containing only the sum of the forward scattering is given by the
black dotted line. (b) The percentile distribution of the maximum and minimum mutual
scattering.

The statistics of that variation are shown in Fig. 3(b), notably the 50-percentile and 90-percentile
distribution of both the maximum and minimum mutual scattering. It is apparent that the mutual
scattering amplitudes vary strongly with varying configurations. For example, at γ = 30◦, there
is a 90% chance out of 1000 realizations that the value of the maximum mutual scattering is
found in the range between 1 and 1.2. The variations increase with increasing angle, such that at
angles in excess of γ = 60◦ the variation ranges of maximum and minimum start to overlap.

The mutual scattering statistics are more readily apparent at a constant angle as shown in
Figs. 4(a),(b) for γ = 30◦, which shows the histograms of the maxima and minima for symmetric
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incident beams for Ndipole = 250 and Nrealization = 1000. In this representation, it is apparent that
both the maximum and minimum mutual scattering amplitudes show considerable variations
over all realizations. In one extreme realization, where the maximum and minimum mutual
scattering can both take the value 1.0, the whole mutual scattering effect is completely washed
out. On the other hand, when averaged over all realizations, however, there is a significant
mutual scattering, with the mean being 1.1 (maximum) and 0.9 (minimum), where the difference
exceeds the indicated standard deviations. Furthermore, Fig. 3(b) and Figs. 4(a),(b) show that the
probability distributions of both maximum and minimum mutual scattering at a fixed angle γ are
neither symmetric nor normally distributed. The maximum scattering is right-skewed, while the
minimum is left-skewed.

Fig. 4. 15-bin percentage histogram of maximum (blue) and minimum (orange) mutual
scattering of symmetric incident beams for Ndipole = 250 and Nrealization = 1000 at angle
γ = 30◦. The black circle in the center of the double-headed arrow represents the mean
value, and the standard deviation s of the maximum and minimum mutual scattering over all
realizations is indicated by the black double-headed arrows.

Figure 5(a) shows the inverse standard deviation as a function of the number of dipoles, and
Fig. 5(b) shows the inverse standard error of the mean ŝ versus the number of realizations, for
three representative angles (γ = 30◦, 90◦, and 180◦). Naively, we expect that an increase in
the number of dipoles, corresponding to an increase in the number of scattering events, would
increase the standard deviation of mutual scattering. However, the inverse standard deviation
overall increases with the number of dipoles with power between 0.5 and 1.0 (Fig. 5(a)). On the
other hand, as a function of the number of realizations, all three curves of the inverse standard
error ŝ−1 := s−1N1/2

realization in Fig. 5(b) are closely consistent with a power 0.5. This implies that
the standard deviation s is almost independent of the number of realizations.

The standard deviation s of mutual scattering in Fig. 5(a), and the standard error of the mean ŝ
of mutual scattering in Fig. 5(b), increase as the angle between the two incident beams increases.
Indeed, the blue line (for γ = 30◦) is always above the orange line (for γ = 90◦), which is, in
turn, higher than the green line (for γ = 180◦). This is consistent with Fig. 3(b), where mutual
scattering fluctuates with larger amplitude at larger angles.

Figure 5(a) shows that when the number of scatterers increases, and hence the density of
scatterers, the distribution of mutual scattering becomes statistically less dispersive. The mutual
scattering at high density is then less sensitive to the internal configurations of the sample. While
the density of the scatterers increases, the sample becomes increasingly opaque and the mutual
scattering converges to its average values, that is, the blue and orange lines in Fig. 3(b) converge,
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Fig. 5. (a) Inverse standard deviation s−1 of the distribution of the maximum mutual
scattering of two symmetric incident beams versus the number of dipoles Ndipole. The
results are averaged over Nrealization = 50 realizations. (b) Inverse standard error ŝ−1 of the
distribution of the maximum mutual scattering of two symmetric incident beams versus the
number of realizations Nrealization. The results are computed for a given number of dipole
scatterers Ndipole = 250. The black slopes in the bottom right corners of (a),(b) indicate
three different power laws (y ∝ xk where k = 0, 0.5, and 1).

with a sine cardinal shape. Therefore, we associate the sine cardinal behaviour of the average
value of mutual scattering with the external shape of the sample. At the same time, Fig. 3(b)
shows that the larger the angle γ, the wider the distribution of maximum and minimum mutual
scattering, corresponding to blue and orange zones in Fig. 3(b), are. Consequently, as the angle γ
increases, the mutual scattering is more influenced by the internal structure of the sample, and
the sine cardinal shape of mutual scattering gradually becomes fainter. Summarizing this section,
from a practical point of view, the mutual scattering at large angles holds information on the
internal structure of the sample, and vice versa the mutual scattering at small angles characterizes
a sample’s external shape.

3.2. Asymmetric incident beams

For the case of asymmetric incident beams, the incoming direction of the first beam kin,1 is fixed.
The angle of incidence of the first and second beams are no longer equal and are denoted as
γ1 = 0◦ and γ2 = γ, respectively. As a result, the symmetry of mutual scattering between beam 1
and beam 2 no longer holds. For example, the difference between the mutual scattering of beam
1 (FMS

1 detected at the sensor A) and beam 2 (FMS
2 detected at the sensor B) is illustrated by

Figs. 6(a),(b).
The most obvious difference between Fig. 6(a) and Fig. 6(b) is the symmetry of Fig. 6(a).

In particular, the average lines of the maximum and minimum mutual scattering are perfectly
symmetrical about the black dash-dotted line (the forward scattering line ⟨Fforward

1 (γ)⟩), which
has a value of 1 at all angles γ. This is explained by the fact that the angle of incidence of the
first beam is γ1 = 0◦. On the other hand, for beam 2 in Fig. 6(b), the forward scattering line
⟨Fforward

2 (γ)⟩ reach local maxima at γ2 = 45◦ and γ2 = 135◦.
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Fig. 6. (a) Mutual scattering of the first beam FMS
1 from two asymmetric incident beams

with respect to the angle (γ) for Ndipole = 250 and Nrealization = 1000. (b) Mutual scattering
of the second beam FMS

2 .

4. Results II - Comparison between two-beam mutual scattering and one-beam
techniques

The goal of this section is to compare the two-beam mutual scattering and the traditional one-beam
scattering. If the second beam in Fig. 1 is turned off and the incoming direction of the first beam
kin,1 is fixed at 0◦ (γ1 = 0◦), we have the conventional one-beam experiment. Then, the sensor at
B in Fig. 1 only detects the current of the field scattered from direction kin,1 into direction kin,2.
This scattered current can be considered as the angular “speckle” of the object [28], which is
proportional to the differential cross-section from direction kin,1 into direction kin,2:

dσ
dΩ

(γ) ≡
dσ
dΩ

(kin,2, kin,1) = |f (kin,2, kin,1)|
2, (4)

where f (kin,2, kin,1) is the scattering amplitude of the object. On the other hand, the mutual
scattering of the second beam FMS

2 contains the interference between the incident field in the
direction kin,2 and the field scattered from direction kin,1 into direction kin,2.

Figure 7(top, bottom) shows the comparison between the one-beam differential cross-section
and the maximum mutual scattering for a fixed “reference” configuration of 250 dipoles. It is
worth noting that two reference blue lines in Fig. 7(top, bottom) tend to fluctuate up and down
similarly at the same angles. In fact, the angular Pearson’s correlation of the two blue lines in
Fig. 7(top) and (bottom) is 0.96 (very close to 1), which implies a strong correlation between one
and two-beam speckles

On the other hand, the blue line of the two-beam technique in the top figure fluctuates not
only at larger values but also with a larger amplitude than the one-beam. As is apparent in
Fig. 7(bottom), when the angle γ between the two beams increases, the differential cross-section
dσ/dΩ decreases sharply to zero and varies in the range from 10−4 to 10−2. While the mutual
scattering in Fig. 7(top) experiences a stronger variation as the value FMS

max,2 − 1 of the reference
configuration mostly fluctuates around 10−1. The 10 to 1000 times larger magnitude of mutual
scattering compared to the differential cross-section is understood mathematically from the fact
that the interference part of FMS

2 is proportional to the imaginary part of the scattering amplitude
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Fig. 7. Comparison in a semi-log scale between (top) the maximum mutual scattering of
the second beam FMS

max,2 in the case of asymmetric incidence and (bottom) the differential
cross-section |f21 |

2 ≡ |f (k2, k1)|
2 with Ndipole = 250, and Nrealization = 50. The blue zones

show how the maximum mutual scattering and the differential cross-section vary as the
configurations of the dipoles are changed.

Im
[︁
f (kin,1, kin,2)

]︁
(see the Appendix for more details), while the differential cross-section Eq. (4)

gives the modulus squared of the scattering amplitude |f (kin,1, kin,2)|
2. In short, we consider

the mutual scattering as a quantity that not only captures but also magnifies the behaviour of
differential cross-section dσ/dΩ, corresponding to the traditional speckle.

5. Results III - Sensing the position of a single displaced scatterer

Knowing that two-beam mutual scattering is more sensitive than conventional one-beam scattering
with respect to internal position variations of scatterers inside an opaque sample, we now turn
to how the displacement of a single nanoparticle deep inside a sample is sensed with mutual
scattering.

5.1. Setup

In brief, the procedure of our numerical setup is as follows:

1. We start with a “reference” configuration: a selected dipole at position r0, and the other
(Ndipole − 1) dipoles randomly distributed in the box, as illustrated in Fig. 2(b).

2. The selected dipole at r0 is displaced in the x-direction, as shown in Fig. 2(b), while the
positions of all other (Ndipole − 1) scatterers are fixed.

3. We calculate the difference in mutual scattering between the reference configuration and
the new configuration obtained after the displacement of the red-sphere dipole.

4. We repeat the process with a new reference configuration where the selected dipole is
still located at r0 but the other (Ndipole − 1) dipoles have randomly changed positions. We
compute the resulting statistic after Nrealization different configurations.

We quantify the variation of mutual scattering relative to the displacement of a single scatterer
by a mathematical quantity called “sensitivity”, which is defined based on Figs. 8(a),(b). For
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example, the sensitivity of two-beam mutual scattering is defined as the ratio of variation upon
moving one scatterer, i.e., the orange slashed zone in Fig. 8(b), to the variation upon the complete
change of configuration of selection of scatterers when moving all Ndipole scatterers, i.e., the light
blue line in Fig. 8(b), by the following equation:

δ̃FMS :=

|︁|︁FMS − FMS
ref

|︁|︁
FMS

sup − FMS
inf

, (5)

where FMS
ref stands for the reference configuration. After moving the selected dipole to a new

position, the sensitivity of mutual scattering (compared to reference configuration FMS
ref ) is denoted

by δ̃FMS. FMS
sup and FMS

inf refer to the limit superior and limit inferior which bound the variation of
mutual scattering with respect to all the possible configurations of scatterers. The sensitivity of
one-beam differential cross-section δ̃ |f21 |

2 from direction k1 to direction k2 is calculated similarly
to mutual scattering.

Fig. 8. Illustration of the sensitivity of mutual scattering for Ndipole = 250: (a) The solid
blue line represents the reference maximum scattering before moving the selected dipole,
i.e., the red sphere in Fig. 2(b). The dash orange line is the maximum scattering computed
when the selected dipole has been displaced to the new position. The light blue zone covers
all the values of maximum scattering for Nrealization = 50 realizations. (b) The sensitivity of
mutual scattering (5) is defined as the ratio of the variation upon moving one scatterer (the
orange zone) to the variation upon moving all Ndipole scatterers (the light blue zone).

5.2. Results and discussion

We express the sensitivity of mutual scattering in Eq. (5) as a function of displacement of a single
dipole originally located at position r0 = (0, 0, 0), i.e., the center of our box sample. The selected
dipole is shifted along the x-axis. The statistics of the sensitivity of the maximum scattering of
the second beam δ̃FMS

max,2 and the differential cross-section δ̃ |f21 |
2 ≡ δ̃ |f (kin,2, kin,1)|

2 with respect
to the displacement ∆x at angle γ = 90◦ are shown in Figs. 9(a),(b). Data are calculated with
Ndipole = 250 dipoles, based on Nrealization = 50 different reference configurations of the location
of dipoles. The solid blue lines stand for the mean value of the sensitivity, while the dark and
light blue zones are the 60-percentile and 90-percentile of the probability distribution of the
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sensitivity, respectively. The displacement value ∆x is normalized based on wavelength λ and
scattering mean free path lscat.

Fig. 9. Comparison between (a) the sensitivity of differential cross-section δ̃ |f12 |
2 and

(b) the sensitivity of the maximum scattering of the second beam δ̃FMS
max,2 with respect

to the displacement in the x-direction of moving dipole, measured at angle γ = 90◦ for
Ndipole = 250 and Nrealization = 50.

We immediately notice the similarity between two figures Fig. 9(a) and Fig. 9(b), i.e., between
the sensitivity of differential cross-section δ̃ |f12 |

2 and the maximum scattering δ̃FMS
max,2. In

other words, the one and two-beam speckles convey the same information about the internal
configuration of the sample. At the first glance, there is no clear benefit of using two-beam
techniques. However, as pointed out in Fig. 7(bottom), the magnitude of the differential cross-
section, especially at large angles, is so small that measuring the subtle changes in one-beam
speckles is experimentally challenging. Introducing the second beam magnifies the change of
one-beam speckle (see Fig. 7(top)), which allows us to study the dependence of speckles on the
structure of the sample for the first time through the property of mutual scattering.

Let’s take a closer look at the sensitivity of the maximum scattering of the second beam (δ̃FMS
max,2)

in Fig. 9(b). The value of sensitivity tends to sharply increase in the range ∆x/λ ∈ [0, 0.5], then
reaches the asymptotic value and stays around 0.025, over the range ∆x/λ ∈ [0.5, 1.5]. Intuitively,
when changing one dipole out of Ndipole dipoles, the sensitivity function is expected to change
with a value of approximately the ratio 1/Ndipole. In other words, we expect δ̃FMS

max,2 × Ndipole ≈ 1.
However, as seen on the right twin y-axis in Fig. 9(b), the asymptotic value of mutual scattering
at large displacement is on average 6 times the expected rate.

After expressing the sensitivity of the maximum mutual scattering of the second beam δ̃FMS
max,2

as a function of the displacement of the dipole from the center of the sample, the next step is
to find out how the sensitivity changes if the starting point of the moving scatterer is located
elsewhere in the sample. In particular, let the original starting point of the moving (red) dipole
be r1 = (0, 0, z), where z represents how deep the dipole lies inside of the sample relative to the
incident surface. We choose 3 values of z:

• z = −1.75: The dipole is located very close to the incident surface.
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• z = 0: The dipole is at the center of the box.

• z = 1.75: The dipole is located very far from the incident surface and near the exit surface.

We plot the sensitivity of the maximum mutual scattering of the second beam δ̃FMS
max,2 with

respect to the x-direction displacement of the moving dipole from r1 = (0, 0, z) for all three values
of z in Fig. 10(b). We again notice the similar parttern between the sensitivity of the maximum
mutual scattering in Fig. 10(b) and the differential cross-section in Fig. 10(a). This consolidates
the fact that we can use mutual scattering as a substitute for differential cross-section, i.e., the
modulus squared of scattering amplitude, in order to detect the location of a single scatterer.

Fig. 10. Comparison between (a) the sensitivity of differential cross-section |f21 |
2 ≡

|f (k2, k1)|
2 and (b) the sensitivity of the maximum mutual scattering δ̃FMS

max,2 of beam 2 in
the case of asymmetric incidence with respect to the displacement of the moving dipole at
angle γ = 90◦ for Ndipole = 250 and Nrealization = 50. The figure depicts 3 different depths
z = −1.75, z = 0, and z = 1.75 corresponding to 3 colors blue, orange, and green respectively.
The solid lines stand for the mean value, while the colored zones represent the standard error
of the mean.

Similar to Fig. 9(b), the sensitivity functions increase and then fluctuate around a fixed value,
which depends on the original depth z of the displaced dipole. We see that the blue line is always
above the orange line, which is, in turn, above the green line. In other words, the sensitivity
of the dipole located close to the incident surface (z = −1.75) fluctuates at a larger asymptote
than the sensitivity of the dipole located far from the incident surface (z = 1.75). In addition,
the standard error of the mean of the sensitivity tends to decrease as the original location of the
displaced dipole is further away from the incident surface.

The final conclusion of this paper is summarized by Fig. 11, which expresses the average
sensitivity function of the maximum mutual scattering of beam 1 ⟨δ̃FMS

max,1⟩, i.e., the blue line,
and beam 2 ⟨δ̃FMS

max,2⟩, i.e., the orange line, as functions of the depth of the displaced dipole in
the case of asymmetric incidence. The result is computed for Ndipole = 250 and Nrealization = 50
at the displacement ∆x = 1.5λ and averaged over all the angles γ. In agreement with Fig. 10(b),
Fig. 11 shows that the sensitivity of mutual scattering of beam 2 decreases as the depth z (relative
to the incident surface) of the displaced dipole in the x-direction increases. This property is
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understood through the scattering amplitude f (kout, kin) of multiple scatterers. For a fixed kin,1,
we conjecture that scattering amplitude f (kin,2, kin,1), i.e., the scattering strength from kin,1 to
kin,2, will be more affected by scatterers located closer to the incident surface (in the direction
kin,1) than ones located further away. On the other hand, the sensitivity of mutual scattering of
beam 1 tends to grow with the depth z. This is explained as follows:

1. Since scattering amplitude f (kin,2, kin,1) is more affected by the scatterers located closer to
the incident surface (in the direction kin,1), by the reciprocity of light, for a fixed kin,1, the
scattering amplitude f (−kin,1,−kin,2) (the scattering strength from −kin,2 to −kin,1) will
be more affected by scatterers located further from the incident surface (in the direction
−kin,1).

2. Since f (−kin,1,−kin,2) is more affected by scatterers located further from the incident
surface (in the direction −kin,1), by the symmetry of our box sample, for a fixed kin,1, the
scattering amplitude f (kin,1, kin,2) will be more affected by scatterers located further from
the incident surface (in the direction kin,1).

Fig. 11. Average of sensitivity function of the maximum mutual scattering δ̃FMS
max of beam

1 (the blue line) and beam 2 (the orange line) with respect to the depth of the moving dipole.

All these statistical properties are used to determine the location of the moving dipole, or even
further, detect motions inside opaque objects.

6. Discussion

The larger amplitude of fluctuation of the two-beam mutual scattering compared to the one-beam
differential cross-section opens up a huge potential to explore structural data which are very
difficult to extract from traditional one-beam speckles. One of the most interesting applications
is in imaging of the movement of tissues and body fluids, which until now still relies on the
Doppler effect in ultrasonography [29]. The complex structure of biological tissues requires
expensive high-tech tools to bypass the multiple scattering problem. Thus, if possible, statistically
detecting the movement of tissues and body fluids through mutual scattering could open up new
possibilities for optical applications in medicine.

Verifying the current theoretical predictions in experiments will guide the next development
of the research on the applications of mutual scattering. Our near-future goal is to measure
the statistical difference in the sensitivity of mutual scattering with respect to the change of
displacement of the internal fraction of opaque media in the upcoming experiments.
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One of the further research directions of this topic is to fully develop a method and schematic
diagram based on mutual scattering for extracting a complete profile of the complex scattering
amplitude of a given sample for all incoming and outgoing wave vectors. Since mutual scattering
allows us to extract the imaginary part of the scattering amplitude Im [f (kout, kin)], it is possible
to reconstruct the full profile of the full complex profile of scattering amplitude f (kout, kin) of the
object for all incoming and outgoing directions.

Finally, it is worth investigating the potential of speckle correlation of “two-beam speckle
patterns”, which is used commonly for single-beam techniques [30–32], as another way to extract
more information about the shape and movement of the object.

7. Conclusion

In this paper, we discuss potential applications of mutual scattering in the study of the internal
structure of matter. In particular, mutual scattering from incoming beams, which possesses
the same order of magnitude as the scattering amplitude, is easily measured with much higher
accuracy than the scattering current from one beam, which is proportional to the modulus square
of the scattering amplitude. Adding an extra beam (on top of traditional one-beam techniques)
and measuring “two-beam speckle patterns” allows us to more precisely extract statistical data
regarding the internal structure of objects, which is usually not properly appreciated and is
considered as noise to be eliminated.

Moreover, we demonstrate through a numerical example how information about the depth of a
displaced dipole in an opaque box is obtained through the sensitivity of mutual scattering. In
detail, the optical characteristics of the boxed sample are simulated by the multiple scattering
problem of Ndipole scatterers. The calculation results show that, at different depths, the sensitivity
function of mutual scattering increases with displacement distance and fluctuates around different
values. Studying these statistical data shows that the sensitivity of mutual scattering of beam 2
(or beam 1) tends to decline (or increase) as the depth of the displaced dipole increases, which in
turn reveals the location of the moving dipole.

8. Appendix - Theory

8.1. Scattering with a single incoming wave

We will limit ourselves to scalar waves for mathematical convenience and to reduce the
computational volume. In scattering theory, when scalar light is scattered from an object, the
scalar field is partitioned into an unperturbed part and a scattered part:

ψ = ψin + ψscat, (6)

wherein the case of single incident plane wave, the unperturbed part (the incident part) is given
as follows:

ψin(r, kin) = A exp (ikin · r − iωt + iϕ) . (7)

The real-valued A represents the amplitude, ω and ϕ are the frequency and the phase of the
incoming plane wave. kin = (ω/c)k̂in ≡ kk̂in is the incoming wave vector. Then, the amplitude
of the total wave in the far-field is given by:

lim
r→∞

ψ(r) = lim
r→∞

(ψin + ψscat)

= A exp (ikin · r − iωt + iϕ) +
A
r

f (r, kin) exp (ikr − iωt + iϕ) ,
(8)

where the scattering amplitude f (kout, kin) is the scattering strength from incoming direction kin
to outgoing direction kout, and r = |r|. The scattering amplitude, as shown in Section 3 and
Section 5, is an essential ingredient in extracting the internal structure of the sample.
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We recall that, experimentally, the quantity measured at far-field detectors is usually the current
J of the scalar wave instead of the amplitude of the wave [26]:

J ≡ −Re [(∂tψ)
∗∇ψ] , (9)

where we express the real and imaginary part of a complex value x as Re[x] and Im[x], respectively.
Then, the extinction of the wave is given by the interference of the incoming beams and the
scattered beams:

Jext = −Re[(∂tψin)
∗∇ψscat] − Re[(∂tψscat)

∗∇ψin]. (10)

In the one-incoming-beam case, the observed scattering current measured at the direction r is
given as follows:

lim
r→∞

Jscat(r, kin) =
ω2

r2c
A2 |f (r, kin)|

2 . (11)

8.2. Scattering with multiple waves

The concept of mutual scattering occurs when there are multiple incoming waves. We focus on
the scenario of two incoming plane waves:

ψin(r, kin) = ψin,1(r, kin,1) + ψin,2(r, kin,2)

= A1 exp
(︁
ikin,1 · r − iωt + iϕ1

)︁
+ A2 exp

(︁
ikin,2 · r − iωt + iϕ2

)︁
,

(12)

where we assume that the two beams have the frequency ω. Let A1 (or A2) stand for the amplitude,
kin,1 (or kin,2) the incoming direction and ϕ1 (or ϕ2) the phase of the first (or second) incoming
plane wave.

The amplitude of the waves at far-field for the case of two beams is shown as below:

lim
r→∞

ψ(r) = lim
r→∞

(ψin + ψscat)

=A1 exp
(︁
ikin,1 · r − iωt + iϕ1

)︁
+

A1
r

f
(︁
r, kin,1

)︁
exp (ikr − iωt + iϕ1)

+ A2 exp
(︁
ikin,2 · r − iωt + iϕ2

)︁
+

A2
r

f
(︁
r, kin,2

)︁
exp (ikr − iωt + iϕ2) .

(13)

The current of self-extinction of beam 1 along the forward scattering direction is given by:

lim
r→∞

Jin,1(r, kin,1) = −
2ω
r2 A2Im

[︁
f (kin,1, kin,1)

]︁
δ
{︁
1 − cos(r, kin,1)

}︁
, (14)

where cos(r, kin,1) is the trigonometric function of an angle between two vectors r and kin,1.
δ
{︁
1 − cos(r, kin,1)

}︁
is the Dirac delta function, whose value is zero everywhere except at

1 − cos(r, kin,1) = 0, and whose integral over all values of cos(r, kin,1) is equal to one.
Then, the current of extinction detected along the direction kin,1 consists of the incoming

current of the first beam and the extinction of the field scattered from the direction kin,2 into kin,1:

lim
r→∞

Jext,1(kin,2, kin,1) = −
2ω
r2 A2

1Im
[︁
f (kin,1, kin,1)

]︁
δ
{︁
1 − cos(r, kin,1)

}︁
−

2ω
r2 A1A2Im

[︂
f (kin,2, kin,1)ei(φ2−φ1)

]︂
δ
{︁
1 − cos(r, kin,1)

}︁
.

(15)

We note that the value of limr→∞ Jext,1 depends on the angle between two vectors kin,1 and
kin,2. Let γ denote this angle between kin,1 and kin,2, we express total extinction current of
beam 1 at far-field as a function of γ: limr→∞ Jext,1(γ). Similarly, we express the self-extinction
limr→∞ Jin,1(γ) as a function of γ.
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8.3. Mutual scattering

We define the normalized mutual scattering of beam i, i ∈ {1, 2}, as follows:

FMS
i (γ) =

limr→∞ Jext,i(γ)

limr→∞ Jin,i(γ = 0)
, (16)

where the denominator part is added to normalize the value of mutual scattering. In fact, at γ = 0,
by tuning the phase difference (ϕ1 − ϕ2), the mutual scattering FMS

i (γ = 0) has a maximum value
of 2 and a minimum value of 0 (see for instance Fig. 3).

The self-extinction of beam i containing only the forward scattering, denoted by Fforward
i (γ), is

normalized by the following equation:

Fforward
i (γ) ≡

limr→∞ Jin,i(γ)

limr→∞ Jin,i(γ = 0)
. (17)

The normalized mutual scattering of both two beams FMS
12 (γ) is given by:

FMS
12 (γ) =

limr→∞[Jext,1(γ) + Jext,2(γ)]

limr→∞[Jin,1(γ = 0) + Jin,2(γ = 0)]
. (18)

Equations (16) and (18) will be used throughout this paper to calculate the mutual scattering.
Finally, the forward-scattering (self-extinction) of both beams is given by

Fforward
12 (γ) =

limr→∞(Jin,1 + Jin,2)

limr→∞[Jin,1(γ = 0) + Jin,2(γ = 0)]
. (19)

8.4. T-matrix for multiple scattering problem

Given a complex scattering medium consisting of Ndipole scatterers, it is important to notice that
calculating the T-matrix of the whole sample requires summing all the scattering events order
by order, up to infinite order, from a collection of all Ndipole scatterers. The scattering of each
point scatterer is, in turn, characterized by its single particle t-matrix. We recall the t-matrix for a
single-point dipole (see [33] for more details) as follows:

t(ω) = −
4πc
ω0Q

ω2
0

ω2
0 − ω

2 − i ω3

Qω0

, (20)

where ω0 is the resonance frequency and Q is the quality factor of the resonance. For simplicity,
the frequency ω is normalized to wavelength λ = 1. The resonance frequency is set very close to
the frequency of light ω0 = 1.0001ω. The speed of light is set to 1, c = 1, and the quality factor
is chosen to be 10, Q = 10.

The polarizability α(ω) in Fig. 2 is obtained from the t-matrix of single point scatterer

α(ω) = −t(ω)
c2

ω2 . (21)

From the t-matrix of single point scatterer, the full T-matrix T(kout, kin) of the sample is
obtained by inversion of a matrix Ndipole × Ndipole, where calculation details are given in [18].
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