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BASIC CONSIDERATIONS

When numerically calculating band structures, the val-
ues of frequency ω are computed for discrete vectors k
within the Brilloiun zone and subsequently connected to
form bands. Correctly connecting the discrete values be-
comes nontrivial at points where multiple bands inter-
sect. Since each band represents an eigenstate of the
Maxwell problem, it is possible to utilize the orthogonal-
ity of different bands together with their continuity in k
and symmetry properties to perform these connections
correctly at every point (see, e.g., [1]). It is, obviously,
crucial for the band structures used as the input into our
method to be correctly connected, otherwise the whole
concept of a ’band’ as such is spoiled. In our examples,
we use in each case the corresponding band-computation
software to perform these connections.

The larger the supercell gets, the more bands it con-
tains in the given frequency range, thus making one-to-
one comparison between various supercells impossible.
This effect is known as band-folding and it is a funda-
mental property of the Brillouin zone. Several ways of
’unfolding’ the band structure have been proposed in the
literature, see, e.g., Refs. [2, 3]. Nevertheless, it is still
very hard to draw direct relations of any type between
bands from different supercells as the band-folding effects
seem to also depend on the confinement dimensionality
of the bands. Our approach circumvents this problem
by not requiring such direct relations between different
supercells. Namely, in the Ṽ α/Ẽ plots for large enough
N > N0, each band of the investigated N supercell is
clearly either above or below all the bands with similar
frequencies of the reference N0 supercell.

Our method can be viewed as an extension of the mul-
tifractality techniques, which are usually formulated for
scaling of the participation ratio [4–6]. In the first step
of our framework we also perform similar scaling for the
mode volume in Eq. (4). However, by limiting oneself
to only this scaling behavior, it would require very large
supercell size N to draw conclusive results for the whole
spectrum, as described below and illustrated in Fig. S-1.
To complicate the matter even more, due to the band
folding effects, translating the results obtained for this
large N to experimentally interesting supercells of mod-
erate size would be extremely complicated, if at all possi-
ble. By subsequently introducing the confinement energy
as another analyzed quantity with different scaling expo-
nent than the mode volume and the auxiliary power pa-
rameter α, our method allows for determination of con-
finement throughout the whole spectrum for relatively
small supercell sizes and, as described in the previous
paragraph, free of complications related to band folding.

In our definition of EC in (2) we choose the volume VC
to be centered around the cavity, where the confinement
is expected. Nevertheless, this is not a strict requirement.
Choosing the volume VC at a different location within
the supercell will still yield correct scaling results, albeit
possibly affecting the convergence of the method and thus
requiring larger supercell sizes N,N0 to properly classify
the whole spectrum. It is however necessary, after VC
is selected, to keep this volume constant throughout the
scaling, so that the exponent c−D appears in the scaling
relation for Ẽ in (4), since this is crucial for being able
to tune the values of the exponent κ as needed.

We note that by referring to the quantity EC as the
confinement energy we employ the nomenclature from
photonics, where the quantity W represents the energy
density and its spatial integral corresponds to the energy.
In physical systems that employ differentW , the quantity
EC does not necessarily represent energy. Nevertheless,
due to the absence of a more general term, we stick to
the photonic terminology in this Letter.

The dimension of the supercell used to model the sys-
tem may differ from the system dimensionality D in some
cases. For example, in 2D electronic materials D = 2,
but the charge density usually extends slightly into the
third dimension and, moreover, can be zero in the 2D
plane where the atomic nuclei are positioned. This case
is therefore traditionally modeled by a 3D supercell and
thus the integration in Eqs. (1) and (2) must be per-
formed over three-dimensional volumes, i.e., the volumes
VS and VC will be three-dimensional. Nevertheless, since
the structure of the material is still two-dimensional, the
subsequent scaling analysis of confinement can be per-
formed in D = 2 dimensions with the third dimension
kept constant, i.e., adding unit cells only along the pla-
nar material, as we did in the example of a hexagonal
BN with N vacancy.

In this Letter we are only concerned with integer de-
fect dimensionalities d in systems of dimension D ≤ 3, as
these are the most relevant for experiments. It is however
straightforward to extend our technique to also include
fractal defects with fractional dimensionalities and higher
dimensional spaces. One can directly apply the deriva-
tions in this Supplemental material to find the optimal
values of the auxiliary power α in case of fractional d or
arbitrarily high D. These possibilities further emphasize
the generality of our scaling theory.

In both the theory and examples in this Letter, we
restrict ourselves to cases with two superposed lattices.
One could easily devise an example of a structure in
which more than two lattices are superposed, for example
a system containing two different defect superlattices or
a Lieb lattice with an impurity superlattice [7, 8]. We ex-
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pect it to be straightforward to generalize the essence of
our method to such multiple-lattice cases, however, there
will likely also appear several details that one will need
to address, such as correct extension of one superlattice
when scaling the other. Therefore, this is an interesting
area for further research.

We note that to get additional overview of band con-
finement properties, one can construct maximally local-
ized Wannier functions and analyze their behavior. For
details on this, see [9, 10].

SPARSITY MEASURES: ANALOGIES OF MODE
VOLUME AND PARTICIPATION RATIO

In our confinement analysis, we employ the mode vol-
ume VM as one of two key quantities, defined in Eq. (1).
We note that in literature the definitions of the mode
volume may differ for various applications [11–15], which
is usually manifested in modifications of the integration
volume in Eq. (1). In our case of a superlattice, it seems
physically obvious to choose the supercell volume VS as
the integration domain. Moreover, irrespective of the
physical meaning of the quantity VM, integrating over VS
is crucial to obtain the correct scaling behavior in Eq. (5).
Mode volume is, however, not the only possible choice,
and a whole class of quantities can be substituted for VM
in our confinement identification method.

Ref. [16] is the first to rigorously define the so-called
measures of sparsity. In the most simple terms, measures
of sparsity are functions quantifying the inequality of dis-
tribution of values within a given set. One such measure,
for the set of values {m1, . . . ,mM} ∈ RM , is a pq-mean:

µp,q :=

(
1
M

M∑
m=1

cpj

)1/p

(
1
M

M∑
m=1

cqj

)1/q
. (S.1)

Ref. [16] has shown that, for p < q <∞, µp,q is indeed a
viable measure of sparsity.

There is clear correspondence between the inequality
of W (x) over the volume VS for a given band and its
confinement: For a confined band, W (x) is very high in
certain parts of VS but low everywhere else, while for
an extended band W (x) is approximately equally dis-
tributed over the whole VS. To see this quantitatively,
we write the straightforward continuous generalization
of Eq. (S.1) to quantify the inequality of W (x) over the
volume VS as

Up,q :=

(
1
VS

∫
VS

W p(x)dV

)1/p

(
1
VS

∫
VS

W q(x)dV

)1/q
. (S.2)

Our normalized mode volume Ṽ , as defined by Eq. (3),
turns out to be a continuous version of the pq-mean with
p = 1 and q = ∞, i.e., Ṽ = U1,∞. The fact that q = ∞
means that Ṽ has slightly weaker properties than the
sparsity measure defined by Ref. [16]. This detail is,
however, unimportant for our confinement identification
purposes.

For the purpose of confinement analysis, one can sub-
stitute any other pq-mean Up,q for Ṽ and our method will
still work properly, albeit possibly with different scaling
power than we obtained for Ṽ in Eq. (4). Specifically,
substituting p = 1, q = 2 yields

U1,2 :=

∫
VS

W (x)dV

√
VS
√∫
VS

W 2(x)dV
. (S.3)

The quantity U1,2 corresponds to the square root of nor-
malized participation ratio:

U1,2 =

√
P

VS
, (S.4)

where the participation ratio P [17–19] is given by

P :=

(∫
VS
W (x)dV

)2∫
VS
W 2(x)dV

. (S.5)

Finally, since the pq-mean is a non-negative dimension-
less quantity, its various powers are equivalent in char-
acterizing confinement and thus one can use U2

1,2 instead
of U1,2. This illustrates that, in our approach, instead
of normalized mode volume Ṽ , normalized participation
ratio can be used as well, similarly to any other pq-mean
Up,q.

SHORTCOMING OF MULTIFRACTALITY

In the main text we claim that our method surpasses
multifractality analysis because it is able to identify con-
finement of bands in much smaller supercells than is pos-
sible by multifractality. We illustrate this by applying
the simple multifractality scaling to our example of 3D
inverse woodpile photonic crystal with two linear defects
used in the main text. We analyze the N = 4 super-
cell and use the N0 = 2 supercell as a reference. We
scale either the mode volume Ṽ , in Fig. S-1(a), or the
confinement energy Ẽ, in Fig. S-1(b).

From Fig. S-1(a), we observe that for some bands the
value of Ṽ decreases significantly as the supercell grows
and for some it stays roughly constant. One would imme-
diately expect the bands with constant Ṽ to be extended,
according to Eq. (4). However, differentiating between
the c = 2 and c = 3 bands is basically impossible. More-
over, even the distinction between the ’decreasing’ and
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FIG. S-1. Failure of the standard multifractality approach to
identify confined bands for small supercell sizes. Each band
is represented by a point. (a) Scaling of the normalized mode
volume. (b) Scaling of the normalized confinement energy.
For some bands the plotted values change significantly when
scaling from N0 = 2 to N = 4 while for others they remain
approximately constant. This variety of behaviors indicates
that different confinement dimensionalities c are present in the
band spectrum, as predicted by the multifractality. Neverthe-
less, from each of these plots on its own, it is not possible to
clearly assign confinement dimensionalities to specific bands
and there is thus a need to move beyond the traditional mul-
tifractality method. One can, albeit, infer interesting infor-
mation on confinement properties upon analyzing both plots
simultaneously, which already brings us close to the essence
of our technique of scaling the ratio of Ṽ α/Ẽ.

’constant’ mode volume can be rather unclear, for exam-
ple around the frequencies ω̃ ≈ 0.5.

Similarly, in Fig. S-1(b), for some bands the value of Ẽ
decreases significantly as the supercell grows and for some
it stays roughly constant. In this case, the distinction
between the various confinement dimensionalities is even
blurrier than for the mode volume.

As it is suggestively implied by the combined Fig. S-
1, looking at the scaling of both Ṽ and Ẽ at the same
time and comparing these yields more information than
analyzing only one of them as does the traditional mul-
tifractality approach. This already brings us very close
to our confinement analysis method as described in the
main text, which represents a systematic approach to the
simultaneous scaling of both Ṽ and Ẽ.

DERIVATION OF THE SCALING EQUATION

In a homogeneous D-dimensional system, waves prop-
agate freely in all directions. Adding a periodic structure
with no defects may restrict some ways of propagation,
but the waves will still be extended, i.e., they can prop-
agate from any given unit cell to any other one. Upon
introducing a defect of dimensionality d ≤ D, some waves
may couple to this defect and only propagate within it,
thus never being able to achieve the non-defect unit cells.
A wave coupled to a defect of dimension d has confine-

ment dimensionality c = D − d, i.e., it is confined in c
dimensions. This effect is very strongly observable upon
scaling of the system size. To analyze the confinement
dimensionality of waves, one can utilize the scaling of
mode volume and confinement energy.

Mathematically, the behavior of mode volume, defined
by (1), for such a wave is given by

VM = ANd +O(Nd−1)

= AND−c +O(ND−c−1),
(S.6)

where A is a constant independent of N . In fact, A is
actually a functional depending on the permittivity dis-
tribution ε(x) and the band number. Eq. (S.6) holds
beyond the localization length of a given wave and ex-
presses the fact that the mode volume of a confined wave
can only grow within the geometrical constraints of the
defect, with a small contribution of decaying waves in
other directions. Upon normalization by VS = ND, we
obtain

Ṽ = AN−c +O(N−c−1). (S.7)

Similarly, the normalized confinement energy, defined
by (2) and (4), behaves as

Ẽ = BN−d +O(N−d−1)

= BN c−D +O(N c−D−1),
(S.8)

where B is a constant independent of N . Analogously to
A, B is in fact a functional depending on the permittivity
distribution ε(x) and the band number. Eq. (S.8) holds
beyond the localization length of the given wave and ex-
presses the fact that the confinement energy of a confined
wave can only escape from the volume V0 in ways that
obey the geometrical constraints of the defect. There
can also be additional, fast decaying, leakage expressed
by the term O(N c−D−1).

We combine the Eqs. (S.7) and (S.8) and, upon neglect-
ing the big-O contributions, we obtain for a wave with
the confinement dimensionality c in the limit N →∞:

Ṽ α

Ẽ
=

(AN−c)
α

BN c−D = CN−(α+1)c+D, (S.9)

where C = Aα/B. Eq. (S.9) represents exactly our scal-
ing relation in Eq. (5).

DETERMINING THE AUXILIARY POWERS α

In our method, we are able to distinguish between the
bands with c < j and c ≥ j by tracking the behavior of
Ṽ α/Ẽ according to Eq. (5), as the supercell size changes
from a smaller reference size N0 to the investigated size
N . By varying j over all the values 0 < j ≤ D, this ap-
proach allows us to completely classify all wave bands in
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the spectrum based on their confinement dimensionality.
For this approach to work, the power α has to be chosen
so that κ < 0 for all c ≥ j and κ > 0 for all c < j, where κ
is given by Eq. (6). This condition, however, still allows
for some freedom in the choice of α, which can be used
to reduce the influence of the sub-leading orders to the
Eq. (5).

These sub-leading orders are represented by the big-O
contributions in Eqs. (S.7) and (S.8) and, especially for
small supercells, can change the behavior of certain bands
from what would be expected based on Eq. (5). Since we
determine the confinement dimensionality by analyzing
the change of Ṽ α/Ẽ with respect to the reference super-
cell, the bands most susceptible to the sub-leading order
effects will be the bands where the smallest leading-order
change is expected. According to Eq. (5), these are the
bands, for which κ is close to zero, i.e., for every j, the
bands with c = j and c = j − 1. Because we generally
do not know the contribution of the sub-leading orders
to the overall scaling result, the most reasonable choice
is to maximize the leading-order movement, i.e., that of
the c = j bands downwards and that of the c = j − 1
bands upwards, at the same time.

Since κ := −(α + 1)c + D is a linear function of c,
the desired leading-order movements will be maximal if
κ = 0 at the middle point, i.e., for c = j−1/2. Thus, for
each 0 < j ≤ D, we solve the equation

−(α+ 1)(j − 1

2
) +D = 0. (S.10)

The solution to (S.10) is

α =
2D

2j − 1
− 1. (S.11)

By choosing α according to (S.11) for each D, j, we en-
sure the effective minimization of the sub-leading order
contributions to our scaling analysis and thus the best
precision of our method. The powers α obtained this
way for each j for D = 1, 2, 3 are tabulated in Table I.

ELECTRONIC BAND COMPUTATION

For our analysis of the 2D hexagonal BN layer with N
vacancy, we calculated the band structure and charge
densities using the density functional theory [20] im-
plemented in the VASP code v6.1.1 [21]. We use the
PBE exchange-correlation functional [22] and represent
the electron-ion interaction via the PAW potentials [23],
specifically via the B and N potential files recommended
by VASP. The cutoff energy was set to 550 eV.

We modeled the material using a 3D supercell with pe-
riodic boundary conditions, starting each geometry opti-
mization with the vacuum layer of 12.56 Å perpendicular
to the material layer to eliminate the effects of periodic

FIG. S-2. Confinement analysis applied to electronic waves
in a 2D hexagonal BN with nitrogen deficiency, j = 1. Zero
energy is set at the Fermi level. (a) Band structure of the
N = 5 supercell, flipped to have an energy abscissa. Different
bands are shown with different color for clarity. (b) Scaling
analysis of confinement. Every band is represented by a point.
These results confirm the three point-confined bands around
the Fermi level. However, compared to Fig. 4, several other
bands appear slightly under the reference line. We attribute
this effect to be most likely caused by the sub-leading order
contributions in the scaling and would be remedied for larger
supercell sizes. This conclusion is enhanced by the fact that
the standard deviation for these bands (green area) is higher
than their separation from the reference line.

boundary conditions in this direction. For geometry op-
timization and computation of the charge densities, we
used 11 × 11 Γ-centered k-point grid. Geometry opti-
mization was performed via the conjugate gradient algo-
rithm until the residual atomic forces were smaller than
10 meV/Å. For the computation of the band structure
in Fig. 4(a), we interpolated each segment of the high-
symmetry path with 13 k-points, in addition to the two
high-symmetry points.

For completeness, we include the plot for j = 1, which
was omitted in the main text, in Fig. S-2. These results
confirm the three point-confined bands (c = 2 in a D = 2
system) around the Fermi level. At the same time, some
other bands of the N = 5 supercell seem to be slightly
under the reference values. Naively, this could indicate
c = 1 confinement dimensionality for those bands, how-
ever, in this case we attribute this effect to be most likely
caused by the sub-leading order effects in the scaling.
This would be remedied by using larger supercell sizes
N and N0. This conclusion is confirmed by looking at
the standard deviation of the c 6= 2 bands for the N = 5
supercell (green area in Fig. S-2(b)), which is higher than
the separation of the questionable bands from their ref-
erence line, in each case. Fig. S-2 exemplifies that our
framework can offer rigorous and cost-effective scaling
analysis, but, especially for small supercell sizes, its re-
sults must still be critically evaluated to avoid the sub-
leading order effects of scaling.
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PHOTONIC BAND COMPUTATION

In the main text we analyze light confinement in a
3D inverse woodpile photonic band gap superlattice with
two proximate linear defects. The photonic band gap
crystal consists of bulk silicon (ε = 12.1, see Ref. [24]),
in which nanopores of radius R filled with air (ε = 1) are
etched [25, 26]. We model the unperturbed crystal using
a tetragonal unit cell with lattice parameters a in the y
direction and b = a/

√
2 in the x and z directions. This

unperturbed structure is depicted in Fig. S-3(a).

FIG. S-3. (a) Structure of an unperturbed inverse woodpile
photonic crystal. We use a tetragonal unit cell with lattice
parameters a in the y direction and b = a/

√
2 in the x and

z directions. The pore radius is denoted by R. The figure
shows an N = 2 supercell, with one unit cell designated by
the dashed border. (b) Design of the defect. The radius R′

of two proximate defect pores (shown in green) is altered.
At their intersection a region with excess of one material is
created that serves as a point defect (red glow).

A defect can be incorporated in the structure by al-
tering the radius R′ of two proximate nanopores, as
illustrated in Fig. S-3(b). In our example from the
main text we use the unperturbed pores of the radius
R = 0.24a and the defect pores with the increased ra-
dius R′ = 0.35a > R. This results in creation of a re-
gion with excess air at the intersection of the two defect
pores, serving as a point defect. We include one defect
of this type per supercell. Such a defect results in split-
ting of the defect bands from the bottom edge of the band
gap, in analogy with acceptor-doped lattices in solid state
physics.

We investigate the confinement of N = 4 supercell and
use N0 = 2 as a reference. The spectrum of the investi-
gated cavity superlattice is computed by the plane-wave
expansion method using the well-known MPB code [27]
and is depicted in the main text in Fig. 5(a). For the
band structure, we follow the high-symmetry path of the
tetragonal unit cell (see Ref. [28]), as depicted in Fig. S-4.

We perform scaling analysis to identify the confinement
dimensionality c of each band, as described by our theory
introduced in this Letter. Each step of the analysis for
this D = 3-dimensional system is described in Fig. S-5.
We choose the auxiliary powers α based on Table I.

Fig. S-5(a) describes j = 3, with α = 1/5. Out of

FIG. S-4. Brillouin zone of a tetragonal unit cell (black) with
the corresponding high-symmetry path (red). The Cartesian
basis vectors (blue) are denoted by bx, by, bz. For more details,
see Ref. [28].

the whole spectrum of unidentified bands, three bands
around ω̃ = 0.6 decrease in value of log

(
V 1/5/E

)
with

respect to the reference supercell. Visual inspection of
energy density confirms the point-confined character of
the two bands at ω̃ ≈ 0.62. We thus confidently identify
these two bands as having c = 3 confinement dimen-
sionality. This is in stark contrast with the statement
made in Ref. [11] that no point-confined bands exist in
acceptor-like 3D inverse woodpile crystals.

The visual inspection of the energy density also shows
that the band at ω̃ ≈ 0.58 is confined in at least two
dimensions, however it is visually not clear if the con-
finement is c = 2 or c = 3 and we are thus unable to
confirm the correctness of the result for this band. This
band also appears to be degenerate in the M-A region
with the bands to its right, see Fig. 5(a) in the main
text. It is therefore likely that all of these bands have
the same c and either the blue ones or the red one are
misindentified as a result of sub-leading order effects due
to the small supercell sizes.

Fig. S-5(b) describes j = 2, with α = 1. In this case,
several additional bands between roughly ω̃ = 0.5 and
ω̃ = 0.6 drop below the values of the reference supercell.
These newly separated bands are therefore identified as
having c = 2 confinement dimensionality. This marks
the first time such c = 2 bands are distinguished from
fully extended bands in a 3D inverse woodpile photonic
structure.

Fig. S-5(c) describes j = 1, with α = 5. There are
several more bands dropping below the reference line.
According to our framework, this would mean that they
are plane-confined, i.e., having c = 1. Nevertheless, we
know that our defect geometry is linear and therefore
cannot support plane-confined bands. These bands must
thus either have c = 2 or c = 0.

The misidentification for bands that should have c = 2
is due to the fact that the size of the (reference) supercell
is still below the localization length in the plane where the
linear defects are positioned. However, the scaling Eq. (5)
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FIG. S-5. Step-by-step confinement analysis of bands in a supercell of size N = 4, for a 3D inverse woodpile photonic crystal
with two proximate line defects. As a reference, supercell of size N0 = 2 is taken. Every band is represented by a point. The
parameter values are (a) j = 3, α = 1/5, (b) j = 2, α = 1, (c) j = 1, α = 5, as per Table I. We note that the slight shift in
frequency between the bands from N0 = 2 and N = 4 is due to different effective refractive index of the supercells and tends
to zero for larger supercells.



7

FIG. S-6. Step-by-step confinement analysis of bands in a supercell of size N = 3, for a 3D inverse woodpile photonic crystal
with two proximate line defects. As a reference, supercell of size N0 = 2 is taken. Every band is represented by a point. The
parameter values are (a) j = 3, α = 1/5, (b) j = 2, α = 1, (c) j = 1, α = 5, as per Table I.
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FIG. S-7. Step-by-step confinement analysis of bands in a supercell of size N = 4, for a 3D inverse woodpile photonic crystal
with two proximate line defects. As a reference, supercell of size N0 = 3 is taken. Every band is represented by a point. The
parameter values are (a) j = 3, α = 1/5, (b) j = 2, α = 1, (c) j = 1, α = 5, as per Table I.



9

holds only for supercell sizes larger than the localization
length. Therefore it is understandable that our method
’thinks’ that these bands are plane-confined. Simply put,
for the given supercell size, the information about con-
finement of these bands is not yet available in the calcu-
lated energy density and thus cannot be extracted from
it by any means, unless implementing some additional
knowledge, for example about the defect geometry.

The misidentified bands that should have c = 0 are
caused by the fact that for the given supercell size the
effects of the sub-leading order terms on Eq. (5) are still
too large. This is an issue of the convergence of our tech-
nique and it would also be corrected for larger supercell
sizes. In this case, it hypothetically could be possible to
devise some alternative way to improve the convergence
since, unlike in the case of the previous paragraph, the in-
formation about the confinement may be available in the
calculated energy density data - this remains, however,
beyond the scope of this Letter.

We note that many of these misidentified bands (green
in Fig. 5) seem to be flat in the Γ-Y, X-R, and M-A re-
gions, which could naively imply their confinement. Nev-
ertheless, all of these regions correspond to the wave-
vector shift in the y-direction and, as it has been shown
by Ref. [29], the coupling coefficients in this direction are
much weaker than in the x, y-directions due to the geo-
metrical properties of the inverse-woodpile structure and
can be tuned by changing the relative distances of neigh-
boring cavities. Therefore the apparent flatness in these
regions is not a reason enough to claim their confinement.

Lastly, all the bands remaining above the reference val-
ues in Fig. S-5(c) are identified as extended, i.e., with
c = 0.

Unfortunately, we do not have enough computational
power available to illustrate the convergence of our
method by analyzing the larger N = 5 supercell. How-
ever, we analyzed two cases using different supercells
than in our main example. The analysis of N = 3 super-
cell using N0 = 2 as a reference is illustrated in Fig. S-6
and the analysis of N = 4 supercell using the reference
N0 = 3 is in Fig. S-7. It is immediately clear that the
separation of bands between the reference and the inves-
tigated supercell in both of these cases is significantly
smaller than in the main case of N = 4 and N0 = 2.
This becomes problematic especially in Fig. S-6(c) and
the whole Fig. S-7, since in these cases the separation
between the supercells is clearly smaller than the spread
of the bands within one supercell. This, for example in
Figs. S-6(c) and. S-7(c), results in several bands at both
ends of the spectrum (around ω̃ < 0.3 and ω̃ > 0.7) being
identified as c = 1. However, it can be easily confirmed
by looking at the energy-density profile of these bands
that they are extended (c = 0). Since these misindenti-
fications do not appear in the N = 4, N0 = 2 case, this
example clearly shows not only that the accuracy of our
method increases with larger supercells, but that it is

also important to maintain large enough size difference
between N and N0.

We note that it might be possible to devise some kind
of Richardson-like extrapolation argument [30] to en-
hance the convergence of our method, by comparing re-
sults for various supercell sizes N . Nevertheless, this is
nontrivial, especially due to the fact that band folding
clearly affects the bands of different c differently. For
now, such an extension remains out of the scope of this
Letter.

Our method is especially powerful for experimentally
interesting supercells of moderate size. These supercell
sizes are, however, in a range where possible inaccuracies
due to finite-size scaling can occur and therefore, natu-
rally, the results need to be critically evaluated. The pre-
sented photonic example further illustrates the strength
and novelty of our method. Our framework has enabled
the discovery of 3D-confined acceptor-like bands previ-
ously thought non-existent and, for the first time ever in
an inverse woodpile structure, distinguished 2D-confined
bands from the extended ones. It is therefore clear that
our technique enables direct access to previously inacces-
sible confinement information.
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