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Functional defects in periodic media confine waves—acoustic, electromagnetic, electronic, spin, etc.—
in various dimensions, depending on the structure of the defect. While defects are usually modeled by a
superlattice with a typical band-structure representation of energy levels, determining the confinement
associated with a given band is highly nontrivial and no analytical method is known to date. Therefore, we
propose a rigorous method to classify the dimensionality of wave confinement. Starting from the
confinement energy and the mode volume, we use finite-size scaling to find that ratios of these quantities
raised to certain powers yield the confinement dimensionality of each band. Our classification has
negligible additional computational costs compared to a band structure calculation and is valid for any type
of wave, both quantum and classical, and in any dimension. In the quantum regime, we illustrate our
method on electronic confinement in 2D hexagonal boron nitride (BN) with a nitrogen vacancy, in
agreement with previous results. In the classical case, we study a three-dimensional photonic band gap
cavity superlattice, where we identify novel acceptorlike behavior. We briefly discuss the generalization to
quasiperiodic lattices.
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Completely controlling wave propagation in periodic
media is a key challenge that is essential for a large variety
of applications [1–15]. An especially interesting type of
control is wave confinement achieved by introducing
disorder and functional defects into an otherwise periodic
medium. The interference of waves in such an altered
structure may result in a strong concentration of the energy
density inside a small subvolume of the medium. Wave
confinement has been investigated for different types of
waves and in various settings, e.g., classical mechanics [16],
photonics [9,10,17–19], solid state physics [20–24], or
magnonics [25,26]. Its applications include sensors, con-
trolled spontaneous emission, and enhanced interactions
between hybrid wave types such as sound and light [27–35].
The analysis of spatial concentration of energy in physical

systems is in photonics traditionally done via the mode
volume [18,36–39] or in condensed matter physics via the
participation ratio [16,23,40]. Bands with small mode
volume or participation ratio are considered confined while,
conversely, bands with large mode volume or participation
ratio are taken to be extended [16,18,19,22–24,41].

However, the notion of what specifically is “large” and
“small” is in each case determined subjectively as there areno
rigorous boundaries imposed by nature.
An alternative method to analyze the wave confinement,

multifractality analysis [42–44], is based on the scaling of
the participation ratio in the limit of infinitely large
supercells. Unfortunately, this approach requires impracti-
cally large supercells, which is further compounded by its
inability to deal with band folding [45].
Therefore, in this Letter we present a rigorous, derived

method to determine the confinement of waves in periodic
structures with defects, based on finite-size scaling [58–60].
Rather than extending the supercells toward impractically
large sizes, our method determines confinement in moder-
ately large supercells by comparing them to smaller ones.
As a consequence, our approach requires only minimal
computational overhead and its results are directly applicable
to experimentally relevant finite systems. Our technique can
be viewed as a more accessible and practical extension of
the multifractality concept and is even suited for automated
classification.
Superimposing a defect lattice on an unperturbed crystal

lattice gives rise to a defect superlattice [6,22,23,61–63].
A unit cell of such a superlattice that containsND unit cells,
withD the system dimension, is referred to as a supercell of
linear size N. For simplicity, we keep here the number of
unit cells per supercell the same for all directions. Based on
the geometric dimensionality d of the defects, wave bands
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with different confinement dimensionality c arise in the
spectrum, as shown in Fig. 1 for an N ¼ 5 supercell in
D ¼ 3 dimensions. The confinement dimensionality c of a
wave determines the number of dimensions in which the
wave is confined and mathematically corresponds to the
codimension of the defect dimensionality: c ¼ D − d. We
note that introducing defects in every unit cell of the
supercell is equivalent to a new periodic structure with no
defects (d ¼ 3) that supports only extended, unconfined
waves (c ¼ 0).
Figure 1 represents highly idealized examples of simple

defects. Real structures often contain multiple defects of
various geometries oriented along different directions. Such
complex defect configurations allow for several different
confinement dimensionalities c and the problem of assigning
the correct c to a given band thus becomes highly nontrivial.
In order to understand the confinement in these real struc-
tures, a systematicmethod of identification and classification
of confined bands is needed.
To analyze the confinement of waves, one must first

determine the physical quantity corresponding to the notion
of wave confinement for the given type of physical wave.
Without loss of generality, one can make this a real, non-
negative quantity. For example, in electromagnetic systems
this quantity could be the energy density, in electronic
systems the charge density, and analogously for other
waves. We denote this spatially dependent confinement
quantity by WðxÞ. To keep the description of our method
general, we assume in the following that WðxÞ has been
identified and can be calculated for every band of interest.
For scientifically interesting structures of moderate

supercell sizes, the number of bands to be analyzed quickly
reaches several hundreds, see, e.g., Refs. [18,19]. It is
therefore impractical to analyze the confinement by

visually inspecting the spatial distribution of WðxÞ for
each band. These limitations call for a quantitative, auto-
matable method to analyze wave confinement.
We employWðxÞ to define the two key quantities for our

scaling analysis. First, we consider the mode volume
[18,36–39] defined as

VM ≔

R
VS

WðxÞdV
maxx∈VS

fWðxÞg ; ð1Þ

where the integration is over the supercell volume VS.
The mode volume intuitively corresponds to the volume in
which the wave is confined. Alternatively, the participation
ratio [16,40] can be used [45].
Second, it is important to also consider the problem from

the converse point of view: How much energy of the wave
is stored in a certain volume? To quantify this notion, we
define the confinement energy

EC ≔
Z

VC

WðxÞdV; ð2Þ

with the integration volume VC taken as the volume of one
unit cell, centered around the defect [45]. An analogous
quantity [65] has been introduced [66] to analyze confine-
ment of surface acoustic waves.
We employ normalized quantities

Ṽ ≔
VM

VS
; Ẽ ≔

EC

ES
; ð3Þ

where ES denotes the total amount of energy in the
supercell.
For a wave band confined within a cavity we expect

simultaneously low Ṽ and high Ẽ, while the opposite
(high Ṽ, low Ẽ) is expected for a fully extended band.
Nevertheless, there are no natural thresholds on how low Ṽ
and how high Ẽ should be for a band to be identified as
confined. To overcome this ambiguity, we analyze the
behavior of Ṽ and Ẽ with respect to the variation of the
supercell size N, instead of their values themselves. This
technique is known as finite-size scaling [58–60].
Our scaling argument is illustrated with the didactic 1D

model in Fig. 2. Let us consider a supercell with N ¼ 4

with a cavity in its center. For a specific band with certain Ṽ
and Ẽ, we are interested in how adding more unit cells to
the supercell boundary changes these values, and how these
changes differ for a confined band as opposed to an
extended band. Therefore, we increase the supercell size
to N ¼ 6.
A confined band is depicted in Fig. 2(a), with its energy

density decaying away from the cavity in the supercell
center. Since the size of the cavity to which the wave is
confined does not change, it follows that the mode volume

FIG. 1. Illustration of supercells of size N ¼ 5 in a D ¼ 3
system with various wave confinement dimensionalities c in-
duced by defect geometries of dimensionalities d. Blue spheres
correspond to regular unit cells, unit cells containing defects are
red, and confined waves are represented by yellow. (a) Four
supercells, each containing a point defect akin to a cavity [11],
trap waves in all three dimensions, d ¼ 0, c ¼ 3. (b) Supercell
with a linear defect, analogous to an optical waveguide or fiber,
d ¼ 1, c ¼ 2. (c) Supercell with a planar defect, analogous to a
2D electron gas [64], d ¼ 2, c ¼ 1.
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VM also remains constant while scaling. However, the
supercell volume VS increases proportionally to N, hence,
the normalized quantity Ṽ decreases for the confined band
as N−1. Since the wave is confined within the cavity, it only
“feels” that additional unit cells have been added through
its decaying tail. This response clearly approaches zero as
N → ∞ and, thus, in this limit Ẽ ¼ const.
An extended band is illustrated in Fig. 2(b) by a constant

energy density throughout the whole supercell. In this case,
the behavior described above is the converse: the volume
occupied by the wave in the supercell grows proportionally
to the supercell volume, resulting in the scaling Ṽ ¼ const.
The energy density extends homogeneously throughout the
whole supercell and will further spread into the added unit
cells as N increases. This leakage decreases the amount of
confinement energy EC within VC as N−1.
It is straightforward to extend the above scaling analysis

to a D-dimensional system. A band with a given confine-
ment dimensionality 0 ≤ c ≤ D obeys the following scal-
ing relations, in the limit of N → ∞ [45]:

Ṽ ¼ AN−c; Ẽ ¼ BNc−D: ð4Þ

Here, A and B are constants independent of N.
One can calculate Ṽ and Ẽ from Eqs. (1)–(3) for each

band, but because the constants A, B are not known
a priori, Eqs. (4) cannot be easily inverted to obtain c.
To accurately obtain c from our scaling relations, we
combine the two equations in (4) into the ratio of the
normalized mode volume raised to a judiciously chosen
power α > 0 and the normalized confinement energy:

Ṽα

Ẽ
¼ CNκ; ð5Þ

where the exponent κ is given by

κ ¼ −ðαþ 1ÞcþD: ð6Þ

By suitably choosing the power α, we can adjust the value of
κ so that it is negative for bandswith certain c and positive for
the other bands. Thevalue of κ, in turn, influences the scaling
behavior of these bands as per Eq. (5).
Our technique is illustrated in Fig. 3. Investigating the

confinement in a supercell of size N, for every 0 < j ≤ D,
we have chosen α so that κ < 0 for all c ≥ j and κ > 0 for
all c < j. We are now able to distinguish between the bands
with c < j and c ≥ j by simply tracking the behavior of
Ṽα=Ẽ as the supercell grows from a smaller reference size
N0 to the investigated size N. The bands with negative κ
will move downward in the graph, while the bands with
positive κ will shift upward, in accordance with the Eq. (5).
By varying j over all the integer values 0 < j ≤ D, this
approach allows us to completely classify all wave bands in
the spectrum based on their confinement dimensionality.
Equation (5) strictly holds only in the limit of very

large N, with subleading order terms in N present for finite

FIG. 2. Illustration of our scaling argument in D ¼ 1. An N ¼ 4 supercell is transformed into an N ¼ 6 supercell by adding unit cells
to its boundary. We investigate how the characteristic quantities Ṽ and Ẽ evolve upon this transition and obtain scaling relations for
them. While scaling, we keep the total amount of energy ES within the supercell constant. (a) Confined band. (b) Extended band.

FIG. 3. Flow diagram to identify bands confined in c ≥ j
dimensions in a D-dimensional medium: the ratio Ṽα=Ẽ versus
the system size N. The auxiliary power α is chosen so that κ < 0
for all c ≥ j and κ > 0 for all c < j. The sign of κ determines if
Ṽα=Ẽ increases or decreases with growing supercell size.
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supercell sizes. By following the procedure as outlined in
the previous paragraph, there is still some freedom remain-
ing in the choice of the auxiliary power α. This freedom can
be utilized to effectively reduce the contribution of these
subleading terms, allowing confinement identification
already for very small supercells. Nevertheless, since the
coefficients corresponding to the subleading terms are
generally not known, one cannot eliminate their effect
completely, which may show up as misidentification of
some bands for small supercells, as we illustrate in an
example below. The unique values of α to maximize the
accuracy of our technique for D ¼ 1, 2, 3 are listed in
Table I. For their calculation, see Ref. [45].
In case of the 1D example from Fig. 2, if we choose

α ¼ 1, corresponding to D ¼ 1 and j ¼ 1 from Table I,
upon plotting Ṽ=Ẽ versus the supercell size N we will
observe that the c ¼ 1 confined band moves down, while
the c ¼ 0 extended band moves up in the flow diagram,
analogously to Fig. 3.
We now demonstrate our method on a 2D hexagonal

boron nitride (BN) with a nitrogen vacancy representing a
pointlike defect [67]. Specifically, we investigate electronic
confinement in a supercell of size N ¼ 5. The band
structure and charge densities of this quantum system were
calculated [45] using density functional theory [68] imple-
mented in the VASP code v6.1.1 [69].
The band structure of the system is shown in Fig. 4(a).

Since the defect in our D ¼ 2 system has point geometry,
we only expect two different confinement dimensionalities
to appear: the point-confined (c ¼ 2) and the extended
(c ¼ 0) bands. To distinguish between these, we choose
α ¼ 1

3
from Table I and use a reference supercell of size

N0 ¼ 3. The plot of logðṼ1=3=ẼÞ for each band in Fig. 4(b)
clearly shows that the majority of bands move upward,
identifying them as extended (c ¼ 0), according to our
framework. Additionally, three bands near zero energy
move downward and thus correspond to point-confined
waves (c ¼ 2), in agreement with the findings of Ref. [67].
In our second example, we demonstrate our technique on

light confinement in an N ¼ 4 supercell of a 3D inverse
woodpile photonic crystal with two proximate line defects
[18,19,70,71]. The crossing point of these line defects
represents a point defect. We study the acceptorlike
structure investigated by Ref. [18]. The defects in this

case have more complicated geometry than in the previous
example: the system sustains point-confined (c ¼ 3) bands,
line-confined (c ¼ 2) bands, and extended (c ¼ 0) bands.
The band structure and the energy densities were calculated
[45] using the MPB code [72].
Figure 5 depicts the results of our analysis. We unam-

biguously identify the confinement dimensionality c of
most bands. Additionally, several bands, mostly near
ω̃ ≈ 0.5, appear to be plane confined (c ¼ 1). We know,
however, that our defect geometry is linear and thus it does
not support plane-confined bands. We attribute this dis-
crepancy to the small size of the studied supercell [45].

TABLE I. Auxiliary powers α to classify the confinement in
systems of various dimensionD. The value of j ≤ D indicates the
confinement dimensionality being identified, as per Fig. 3.

D

1 2 3

j 3 � � � � � � 1
5

2 � � � 1
3

1
1 1 3 5

FIG. 4. Our confinement analysis applied to a 2D quantum
system: electronic waves in a hexagonal BN with nitrogen
deficiency. Zero energy is set at the Fermi level. (a) Band
structure of the N ¼ 5 supercell, flipped to have an energy
abscissa. Bands are distinguished by colors. (b) Scaling analysis
of confinement: every band is represented by a point. As the
supercell size increases from N0 ¼ 3 to N ¼ 5, extended bands
move upward, while the three point-confined bands closest to
zero energy shift down.

FIG. 5. Scaling analysis of wave confinement in an N ¼ 4
supercell of a 3D inverse woodpile photonic crystal with two
proximate line defects. The horizontal axis displays the reduced
frequency ω̃ ≔ ωa=ð2πνÞ, where a is the lattice constant in the y
direction and ν denotes the speed of light. (a) Band structure. In
the M-A region degenerate bands overlap. (b) Confinement
dimensionalities determined by our method for each band. Error
bars denote bands assigned to c ¼ 1, which should not occur in
our structure but appear due to the small size of the supercell.
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Nevertheless, our analysis is the first that distinguishes
c ¼ 2 bands from those with c ¼ 0 in a 3D photonic
superlattice. We also find three bands (red) with c ¼ 3.
Visual inspection confirms the point-confined character of
the two bands at ω̃ ≈ 0.62. We therefore discover point-
confined bands in an acceptorlike 3D inverse woodpile
structure, thus disproving earlier claims [18] that such
bands do not exist. For detailed discussion of the third red
band, see Ref. [45].
Reference [19] has shown that in higher dimensional

structures such as 3D inverse woodpiles there is no direct
correlation between dispersion and coupling in a given
direction and thus one cannot assess confinement by analyz-
ing band dispersion. Our method is able to analyze confine-
ment in such structures where the dispersion arguments
fail. Furthermore, our technique is not limited to “defect”
superlattices in terms of “impurity.” Any superlattice
superimposed on another lattice can be analyzed by our
technique. This is the case for, e.g., Lieb lattices or other so-
called flat-band lattices [73,74]. Our technique is also
directly applicable to quasicrystals by analyzing their
periodic approximants, which, based on Refs. [75,76],
exhibit defect properties virtually identical to their parent
quasicrystals.
In this Letter, we describe a systematic scaling theory to

analyze wave confinement in periodic superlattices, appli-
cable to any type of physical waves. Already in one of the
studied examples our technique uncovers physically new
results, thus showcasing its power. Our method is directly
applicable to actively researched periodic and quasiperiodic
structures and for optimization algorithms aiming to
minimize or maximize specific types of wave confinement.

The data used for this publication are available [77] via
the open-access repository Zenodo that is developed under
the European OpenAIRE program and operated by CERN.
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