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Landauer’s erasure principle states that the irreversible erasure of a one-bit memory, embedded in a
thermal environment, is accompanied with a work input of at least kBT ln 2. Fundamental to that principle is
the assumption that the physical states representing the two possible logical states are close to thermal
equilibrium. Here, we propose and theoretically analyze a minimalist mechanical model of a one-bit
memory operating with squeezed thermal states. It is shown that the Landauer energy bound is
exponentially lowered with increasing squeezing factor. Squeezed thermal states, which may naturally
arise in digital electronic circuits operating in a pulse-driven fashion, thus can be exploited to reduce the
fundamental energy costs of an erasure operation.
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Energy dissipation is one of the main design consider-
ations in digital electronics today [1–3]. Smaller transistors
operating at lower voltages are a natural design choice that
may reduce the power consumption of central processing
units. In 1961, Rolf Landauer argued that there exists a limit
to which the power consumption of certain logical oper-
ations can be reduced. Landauer’s principle states that the
erasure (or reset) of one bit of classical information is
necessarily associated with an entropy increase of at least
kB ln 2 and an energy input of at least kBT ln 2 [4–11]. For
the present generation of silicon-based integrated circuits,
the energy dissipation per logic operation is about a factor of
1000 larger than the Landauer limit. It is, however,
predicted that the Landauer limit will be reached within
the next few decades [1–3]. Thus, improvements in our
understanding of energy dissipation in information-
processing devices are of both scientific interest and of
technological relevance. Because of the ongoing minia-
turization, nonequilibrium and quantum effects must be
taken into account [12–18]. In this work, it is theoretically
demonstrated that memory devices embedded in a squeezed
thermal environment are unbounded by the Landauer limit.
In these environments, thermal fluctuations show fast
periodic amplitude modulations, which can be exploited
to reduce the minimum energy costs for an erasure oper-
ation below the standard Landauer limit. This situation may
naturally occur in digital electronic circuits operating in a
pulse-driven fashion and, in the future, could be exploited to
build more energy-efficient electronic devices.
Squeezed thermal states are the classical analog of

squeezed coherent states in quantum mechanics. Both
states are characterized by an asymmetric phase space
density as opposed to the rotationally invariant phase space
densities of coherent, thermal, or vacuum states. A
mechanical oscillator may be prepared in a squeezed

thermal state [19,20] by a periodic modulation of the
spring constant [21]. This leads to a state with reduced
thermal fluctuations in one quadrature (e.g., momentum)
and enhanced fluctuations in the orthogonal quadrature
(e.g., position). In the context of heat engines, squeezed
thermal reservoirs have been proposed as a resource for
work generation unbounded by the standard Carnot limit
[22–26]. Because of the nonequilibrium nature of these
reservoirs, this does not violate the second law of thermo-
dynamics. In recent work [27], we have demonstrated a
physical realization of such an engine, in which the
working medium consists of a vibrating nanobeam that
is driven by squeezed electronic noise to perform work
beyond the Carnot limit. We have furthermore demon-
strated that a phase-selective thermal coupling allows us to
extract work from a single squeezed thermal reservoir,
which is not possible with a standard thermal reservoir [28].
In this Letter, we propose and theoretically analyze a

minimalist mechanical model of a one-bit memory subject
to squeezed thermal noise. This memory consists of a
single particle that is trapped in a harmonic potential. The
trap can be spatially divided into two halves by a partition
in the trap center. If the particle resides on the left-hand side
of the trap, the memory is regarded as being in the logical
state “0”; if it is located on the right-hand side, the memory
is in the “1” state. We further assume that the particle is
coupled to a squeezed thermal reservoir, which can be
modeled by introducing a stochastic force f ¼ fðtÞ to its
equation of motion, as described by the Langevin equation
mẍ ¼ FðxÞ − c_xþ f. Here m denotes the mass of the
oscillator, c is the viscous damping coefficient, and FðxÞ ¼
−mω2

0x describes the restoring force with ω0 as the
undamped oscillator frequency. The stochastic force fðtÞ
is synthesized from two independent noise signals ξ1;2ðtÞ
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that are mixed with a sine and cosine component of a local
oscillator at frequency ω ¼ 2πν [27]:

fðtÞ ¼ a0½eþrξ1ðtÞ cosðωtÞ þ e−rξ2ðtÞ sinðωtÞ�: ð1Þ
The squeezed thermal reservoir modeled by fðtÞ is char-
acterized by an overall amplitude a0 and a squeezing
parameter r that tunes the imbalance between the two
orthogonal quadratures. Assuming ξ1;2ðtÞ to be white noise,
the power spectral density is frequency independent
and increases exponentially with the squeezing factor:
psd½f�ðωÞ ∝ cosh 2r. The squeezing introduces fast peri-
odic amplitude modulations in the stochastic force as can
be seen from

hf2ðtÞi ¼ a20
3
½e−2r þ 2 sinhð2rÞ cos2ðωtÞ�; ð2Þ

in which h� � �i denotes the statistical average over many
independent realizations.
The impact of the so defined stochastic force on the

single-particle gas can be investigated by means of phase
space densities, such as presented in Fig. 1(a). The
numerical results shown here, and in the rest of this work,
have been obtained by integrating the Langevin equation
using the Runge-Kutta method (fourth order) with constant
time steps. The local oscillator in Eq. (1) is assumed to be
resonant with the undamped oscillator (ω ¼ 2πν ¼ ω0) and
the noise functions ξ1;2ðtÞ ∈ ½−1; 1� are sampled fromwhite
noise generated by a (pseudo-)random number generator
with a high-frequency cutoff at ν=2. The phase space
density presented in Fig. 1(a) demonstrates a reduction in
thermal fluctuations in the squeezed quadrature and an
increase in the antisqueezed quadrature (squeezing factor
r ¼ 0.5). The quantities x̂ and p̂, corresponding to the two
axes of the phase space plots, may be regarded as two
orthogonal quadratures corotating with the driving force
(rotating frame). Another valid interpretation is to regard
x̂ ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mω=ℏ

p
and p̂ ¼ p=

ffiffiffiffiffiffiffiffiffiffi
ℏωm

p
as dimensionless

instances of the actual physical position x and momentum

p (laboratory frame). In this case, the diagram in Fig. 1(a)
represents a stroboscopic phase space density measured at
equidistant points in time t0; ν−1 þ t0; 2ν−1 þ t0;…, where
t0 sets the relative timing of the observations with respect to
the local oscillator in the stochastic force. For the remainder
of this work, we restrict our presentation to the laboratory
frame. An important consequence is that any interaction
with the system has to be performed in a stroboscopic
fashion. A spatial compression, e.g., needs to be divided
into a sequence of smaller compression steps that have to be
executed with the desired timing t0. A concrete realization
of the latter is moving the piston with the velocity
vðtÞ ¼ vmax cos2n½ωðt − t0Þ�, in which n is a large positive
integer and the maximum velocity vmax is kept suffi-
ciently small.
Squeezed thermal states can be understood in terms of a

generalized Gibbs ensemble [27,29]. The thermal fluctua-
tions of the twoorthogonal quadratures x̂ and p̂ are controlled
by two different temperatures Tx and Tp, which take the role
of state variables [see Fig. 1(a)]. The corresponding strobo-
scopic phase space density follows

ρsqðx̂; p̂Þ ∝ exp

�
−

ℏωx̂2

2kBTx
−

ℏωp̂2

2kBTp

�
: ð3Þ

An effective system temperature T may be defined as
T ¼ ffiffiffiffiffiffiffiffiffiffiffi

TxTp
p

. A consequence of this definition is that an
isothermal squeezing operation (T ¼ const) does not
increase the entropy of the state [27].
The scheme to erase one bit of information in a squeezed

thermal memory is shown in Fig. 1(b). During the process,
the single-particle gas is assumed to be in contact with the
squeezed thermal reservoir at all times. First, the partition is
removed and the gas expands freely [step (i) in Fig. 1]. In
the second step (ii), the gas is compressed by a piston. In
the last step (iii), the partition is put back in the center of the
trap. This procedure initializes the memory in the state 0
regardless of the initial conditions. The general idea behind

state 1 state 0

i ii iii

(a) (b)

FIG. 1. (a) Stroboscopic phase space probability density of a squeezed thermal state (squeezing factor r ¼ 0.5, relative timing
t0 ¼ 0.24ν−1). The thermal fluctuations in one quadrature are reduced, while the orthogonal quadrature shows increased fluctuations.
The variances of the line integrated distributions (shown in blue) correspond to two temperatures Tx, Tp that govern the thermal
fluctuations of the system. (b) Scheme to erase one bit of information in a squeezed thermal memory: (i) removal of partition and free
expansion, (ii) stroboscopic compression to half of the volume, (iii) insertion of partition. During the process, the single-particle gas is
assumed to be in contact with the squeezed thermal reservoir at all times.
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the scheme is to use squeezing as a means to reduce the
occurrence of large positive momenta at the position of the
piston during the compressions steps. The latter reduces the
pressure and, thus, the work required for the compression.
In our analysis, we make several assumptions: it is assumed
that the removal (and insertion) of the partition is free of
any energy cost. The collisions of the particle with the
piston are considered fully elastic. We also assume that the
collisions leave the motional state of the piston essentially
unchanged. Note that the proposed scheme relies on the
notion of a spatially compressed squeezed thermal state.
We will first discuss some subtleties and apparent diffi-
culties associated to the latter.
Figures 2(a) and 2(b) show numerically obtained phase

space densities of a confined single-particle gas subject to
squeezed thermal noise in the underdamped (damping ratio
ζ ¼ c=2mω0 ¼ 0.05), critically damped (ζ ¼ 0.5), and
overdamped regime (ζ ¼ 5). For purely harmonic confine-
ment [Fig. 2(a)], the response of the gas to the squeezed
noise is largely independent of the damping regime. This is
markedly different in the presence of a piston [Fig. 2(b)].
Collisions of the particle with the piston induce phase shifts
in the otherwise purely harmonic motion. In the under-
damped regime, these phase shifts destroy the correlation
between particle motion and squeezed noise, which cancels
the squeezing phenomenon. In the critically damped and
overdamped case, the collisions with the piston perturb, but
do not destroy the squeezing phenomenon. In the over-
damped region, an additional effect comes into play,

namely, that the particle tends to “stick” to the piston,
which leads to a strong enhancement of the probability
density in this region. This effect can also be observed in
Fig. 2(c), which shows typical examples of the particle
motion xðtÞ in the various damping regimes. In the over-
damped case, the particle tends to collide several times with
the piston before it is finally accelerated in the opposite
direction.
By recording the elastic collision events in our numerical

simulations, we can derive the work W required to com-
press the gas to half of its initial volume. In Fig. 3(a), W is
shown as a function of the parameter t0, which defines the
points in time, namely t0; ν−1 þ t0; 2ν−1 þ t0;…, at which
the compression steps are executed. At a relative timing
around t0 ¼ 0.33ν−1 and t0 ¼ 0.83ν−1, the work W is
found to exponentially decrease with the squeezing param-
eter r [note the logarithmic scale in Fig. 3(a)]. Under these
conditions, the squeezing effect reduces the occurrence of
large positive momenta close to the piston (indicated by the
red bar), which causes a reduced pressure exerted on the
piston. Our numerical results, thus, give clear evidence that
squeezing can be exploited to reduce the required work for
the reset of a one-bit memory. Note that this effect applies
to both the critical and the overdamped regime, but
vanishes for strongly underdamped systems as shown in
Fig. 3(b).
In the remainder of this work, we discuss a simplifying

analytical model that captures the key aspects of the
described phenomenon. The presence of a piston at position
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FIG. 2. (a) Stroboscopic phase space densities of a harmonically confined particle subject to squeezed thermal noise for three different
damping regimes: underdamped motion (damping ratio ζ ¼ c=2mω0 ¼ 0.05), critically damped motion (ζ ¼ 0.5), and overdamped
motion (ζ ¼ 5). The diagrams represent position-momentum histograms at equidistant points in time t0; ν−1 þ t0; 2ν−1 þ t0;…, where
t0 ¼ 0.24ν−1 sets the relative timing of the observations with respect to the stochastic force. (b) Collisions with the piston (indicated by
the red bar) induce phase jumps in the particle motion, which cancel the squeezing effect in the case of underdamped motion. In the case
of overdamped motion, the particle tends to “stick” to the piston, which leads to a strong enhancement of the probability density in this
region. (c) Typical trajectories xðtÞ of the trapped particle.
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x0 introduces a cutoff in phase space: ρðx̂ > x0; p̂Þ ¼ 0.
We will consequently model a spatially compressed
squeezed thermal state by the density

ρðx̂; p̂Þ ¼ Z−1ρsqðx̂; p̂ÞΘðx0 − x̂Þ; ð4Þ
in which ΘðxÞ is the Heaviside step function [ΘðxÞ ¼ 1 for
x > 0, ΘðxÞ ¼ 0 otherwise] and Z is a normalization
constant such that ∬ ρðx̂; p̂Þdx̂dp̂ ¼ 1.We choose to perform
the compression step against a purely momentum squeezed
state of the gas as depicted in Fig. 2(a). To this end, we set
Tx ¼ T expðþ2rÞ and Tp ¼ T expð−2rÞ [19]. To derive the
work for the compression, we start with a common ansatz
in the kinetic gas theory relating the pressure exerted on
the piston to the average momentum transfer by elastic
collisions: P ¼ R∞

0 2ℏωp̂2ρðx0; p̂Þdp̂. Using Eq. (4), this
results in

P ¼ 2b0gðb0ÞkBTp=x0; ð5Þ
in which we have introduced b0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏωx20=2kBTx

p
and the

auxiliary function gðxÞ¼ π−1=2 expð−x2Þ=½erfðxÞþ1�. With
this, the required work W ¼ R

0
∞ Pdx0 follows as

W ¼ ln 2 kBTp ¼ ln 2 kBT e−2r: ð6Þ

This result confirms the exponential decrease of W with
increasing r, as observed in the numerical simulations. There
is, however, a certain discrepancy regarding the numerical
prefactor in the exponential scaling, see Ref. [30] for further
details.
Since the probability density in Eq. (4) factorizes as

ρðx̂; p̂Þ¼ ρðx̂Þρðp̂Þ with ρðx̂Þ¼ Rþ∞
−∞ ρðx̂; p̂Þdp̂ and ρðp̂Þ ¼Rþ∞

−∞ ρðx̂; p̂Þdx̂, the entropy of a squeezed thermal state
results additively from the contributions of the two quad-
ratures: S ¼ Sx þ Sp. This is quite analogous to the well
known additivity of entropy for independent subsystems.
The two contributions can be determined using the
Shannon entropy, which coincides with the physical
entropy in the case of Gibbs ensembles. From
Sp ¼ −kB

Rþ∞
−∞ ρðp̂Þ ln (ρðp̂Þ)dp̂, one concludes that the

entropy in the momentum quadrature follows as

Sp=kB ¼ lnðkBTp=ℏωÞ=2þ C ð7Þ

with an additive constant C. Note that this result does not
reflect the correct low-temperature behavior of the entropy,
which is an artifact of the purely classical calculation. This
is, however, not crucial for the purpose of this work. In the
same way, we derive a corresponding expression for the
entropy in the position quadrature

Sx=kB ¼ ln

�
x0

b0gðb0Þ
�
− b0gðb0Þ − b20 þ C0: ð8Þ

During the free expansion [step (i) in Fig. 1] no work
is performed. The internal energy U ¼ ∬ dx̂dp̂ρðx̂; p̂Þ×
ðℏω=2Þðx̂2 þ p̂2Þ, which using Eq. (4) evaluates to

U ¼ kB
2
f½1 − 2b0gðb0Þ�Tx þ Tpg; ð9Þ

remains constant: UðTx;Tp;x0 ¼∞Þ¼UðTx;Tp;x0¼ 0Þ.
Consequently, there is no net heat flow between system and
environment and the entropy of the environment remains
constant: ðΔSÞenv ¼ 0. The total entropy change ΔS ¼
ðΔSÞenv þ ðΔSÞsys is solely determined by the entropy
change of the system ðΔSÞsys ¼ ΔSx þ ΔSp, which here
is given by ðΔSÞsys ¼ Sxðx0 ¼ ∞Þ − Sxðx0 ¼ 0Þ. With
Eq. (8), this leads to a total entropy change of

ΔS ¼ kB ln 2: ð10Þ

This is the expected result for an irreversible doubling of
the phase space volume. During the isothermal compression
[step (ii) in Fig. 1] the invested workW is dissipated as heat,
which leads to an entropy increase in the environment of
ðΔSÞenv ¼ W=Tp ¼ kB ln 2 that exactly cancels the entropy
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FIG. 3. Required workW to compress the single-particle gas to
half of its initial volume as a function of the relative timing t0,
which defines the points in time, namely, t0;ν−1þt0;2ν−1þt0;…,
at which the compression steps are executed. The given values of
Wr (for different squeezing parameters r) are normalized to the
work at vanishing squeezing Wr¼0. The temperature T is kept
fixed in all simulations. (a) In the critically damped regime
(ζ ¼ 0.5), the work is observed to exponentially decrease with the
squeezing parameter r close to t0 ¼ 0.33ν−1 and t0 ¼ 0.83ν−1.
(b) Work at constant squeezing r ¼ 0.5 for various damping
ratios ζ. The squeezing effect is observed to vanish for under-
damped systems.
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decrease in the system ðΔSÞsys ¼ −kB ln 2. Thus, no net
change in the total entropy occurs during this step. The same
is obviously true for the third and last step, the insertion of
the partition. This means that the total entropy change of the
universe during the erasure process solely results from the
entropy increase during the free expansion and is conse-
quently given by Eq. (10). In total, we find that the reset of
one bit of classical information in a squeezed thermal
memory leads to the same entropy increase of kB ln 2 as
in a standard thermalmemory,while the requiredwork can be
exponentially lowered with the squeezing factor. We expect
that an experimental verification of the predicted effect using
well-established experimental platforms such as optically
trapped nanoparticles [7,8,31] and nanomechanical devices
[27] is within reach.
Squeezed thermal environments are characterized by fast

periodic amplitude modulations in the thermal fluctuations.
The significance of such nonequilibrium thermal reservoirs
stems from the fact that they may naturally arise in systems
operating in a pulse-driven fashion as is common, e.g., in
digital electronics. The dissipated power in today’s micro-
processors is due to both static leakage and dynamic power
dissipation, in approximately equal parts [2]. The dynamic
power dissipation in a CPU originates from the switching of
logic gates. The latter is physically realized by charging or
discharging capacitors within the gate. This process is
accompanied by current flows and associated Ohmic losses.
If the gate switches periodically in time, it thus acts as a
periodic heat source. As an approximation, one can consider
a gate as a pointlike heat source that periodically dissipates
energy with frequency Ω in a material with heat diffusivity
α1. In this situation, fast periodic modulations of the temper-
ature arise that spatially extend into the environment [32].
Such a transient temperature phenomenon is nothing but a
squeezed thermal environment, which can be seen by
comparison with Eq. (2). The spatial extent of this environ-
ment can be estimated as several times the characteristic
decay length

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α1=πΩ

p
[32], which for Ω ¼ 1 GHz and the

thermal diffusivity of silicon corresponds to several hundred
nanometers. Thus, the periodic power dissipation in a logic
gate induces a squeezed thermal bath in its surroundings that
may even affect neighboring gates. The magnitude of this
effect, the squeezing factor, depends on amultitude of factors
such as geometry, thermal conductivity of materials, and
thermal resistance of interfaces. Using advanced design
approaches, such as thermal rectification [33], thermal flows
can even be decoupled from electronic currents, which
further expands the possibility of deliberately engineering
thermal environments. Similar to what has been demon-
strated in this Letter, a well-timed switching process may
exploit transient temperature phenomena to reduce the
overall dissipated power. The latter applies to all systems
in which the energy costs depend on the temperature—even
if they operate well above the Landauer limit. In the future,
combining concepts of electronics and nonequilibrium

thermodynamics will open up new routes for more energy
efficient electronics.

We thank Emre Togan, Atac Imamoglu, and Willem Vos
for fruitful discussions.
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