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1. Introduction

Almost twenty years ago, after one century of radiative transfer, and twenty
years after the first paper by Anderson on localization [1], the first publica-
tions of the self-consistent theory of localization appeared. Following ideas
of Géotze [2], Vollhardt and Wolfle demonstrated in a series of pioneering
papers [3-5] the importance of the so-called “most-crossed” diagrams for
the renormalization of the diffusion coefficient in wave diffusion. These dia-
grams are now known to be at the very base of all kinds of weak localization
phenomena, such as the Sharvin-Sharvin effect [6] and enhanced backscat-
tering [7]. Twenty years ago it became very urgent to understand the role
of wave localization in a context that concerns transport of waves in open
media, and to include interference effects into transport theory. This goal
was, and still is very ambitious. Earlier studies had shown localization to
be a non-perturbational phenomenon [8]. Very few people believed that lo-
calization could once be understood by generalizing an ordinary, classical
Boltzmann equation. At the same time, however, researchers were eager to
give “great” principles, such as the Thouless criterion [9], and finite-size
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scaling [10] a more microscopic base. This requires an understanding of
localization in open media.

Anno 2000, random-matrix theory [11] and the self-consistent theory
of localization have provided us a wealth of information how transport of
waves in a disordered medium is affected by the nearness of localization.
Such studies were particularly stimulated by experiments with classical
waves, such as microwaves [12-14], visible and infrared light [15, 16, 17]
and acoustic waves [18], whose natural language had always been radia-
tive transfer. To generalize classical transport for interferences, one has the
choice of either solving simplified models exactly, or to find approximate
solutions of “exact” models.

Random-matrix theory (RMT) is of the first kind. Based on the elegant
chaos theory by Dyson and others, RMT is now able to predict many fea-
tures of wave diffusion, including fluctuations, even in the localized regime
[19], and even in a non-perturbational way. Two aspects are still unsolved.
First, RMT was constructed for quasi-one dimensional systems, for which
no mobility edge is believed to exist, and a generalization to higher dimen-
sional systems does not seem feasible. This eliminates RMT as a candidate
to understand features like enhanced backscattering or anomalous trans-
mission. Second, standard RMT is basically a stationary theory. Only very
recently, Beenakker et al. published a dynamic variant of RMT in reflection
[20].

The strong point of the self-consistent theory is that it is based on
a rigorous argument - reciprocity - applied to an “exact” equation - the
Bethe-Salpter equation - that applies in any random system. A weak point
is that the theory can only be worked out approximately, for instance, by
employing the diffusion approximation and a low-disorder expansion. Un-
fortunately, this weak point is often misused as an argument against the
whole principle. The approximate theory gives critical exponents around
the transition, which are typical of mean field approximations and do not
agree with ab-initio studies of the Anderson Tight Binding model [21]. In
addition, the theory only applies to field-field correlation functions, and
does not do any predictions about fluctuations of e.g., conductance. Recent
experimental work by Genack etal. [17] has demonstrated the importance
of fluctuations to get a complete view on Anderson localization. Finally,
the self-consistent theory seems to fail in the absence of time-reversal sym-
metry, e.g., when a magnetic field is present in the medium [5], probably
because this violates one of the two basic assumptions of the theory. Despite
the above weak points, the self-consistent theory has given us deeper insight
into the role of Anderson localization in wave transport. It has confirmed
the Thouless criterion as a universal criterion for wave localization in open
media and has put forward the Ioffe-Regel criterion, anticipated already in
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the early sixties [22], as a criterion for localization in infinite 3D media. As
was shown and emphasized by Wélfle and Vollhardt [5], the self-consistent
theory agrees in great detail with scaling arguments for the dynamic dif-
fusivity D(2) [23] and with the scaling theory for the DC conductance
[10].

One pertinent controversy initiated by the self-consistent theory con-
cerns the scale-dependence of the diffusion kernel itself. Scaling theory has
led to a homogeneous but “scale-dependent” diffusivity kernel D(Q,r —r’),
with Fourier transform D((2,q). Near the mobility edge one has suggested
D(Q, q) ~ q [24-26]. The absence of such g-dependence in the self-consistent
theory is sometimes considered as a serious failure, in spite of its other suc-
cesses mentioned above. Recently, we presented a local formulation of the
self-consistent theory [27] that will be explained below. We find that weak
localization effects lower the diffusion coefficient, but we also infer that the
suppression is different near the boundaries. As a result, we encounter a
new feature: a spatially inhomogeneous, but local diffusion coefficient D(r).
At the mobility edge, our local formulation predicts a scale-dependence
D(z) ~ 1/z of the diffusion coefficient of a slab geometry, leading to a trans-
mission T' ~ 1/L? of a slab with thickness L, and a rounding of line shape
in enhanced backscattering. Both properties have been observed [15, 16],
but were previously interpreted in terms of a scale-dependent diffusivity
D(q) ~ q [26]. As a bonus, our local variant of the self-consistent theory is
able to deal explicitly with boundary conditions in an almost conventional
way. This facilitates “engineering” with the self-consistent theory.

2. Basic Elements of the Selfconsistent Theory

The Green’s function G(ry, t1 — ra, t2) describes the propagation of a
wave at position ry at time ¢; to position rg at time ¢ and can be con-
structed from the underlying wave equation. We denote its ensemble aver-
age by (G). In its most general form, transport theory is a theory for the
ensemble-averaged “two-particle” Green’s function

<G(I‘1, t1 — rs, t3)G*(I‘2, to — ry, t4)> = F(I‘l, t1, ra2, t2, r3, t3, ry, t(4))

1
This object is related to the total intensity of the radiation field. It re-
lates intensity properties at the “source” (indices 1 and 2) to the ones
at the “detector” (indices 3 and 4). In a linear random medium, an ob-
ject U(ry, tq---rq, t4) should exist that generates the two-particle Green’s
function in the following symbolical way,

I=U+U-(G)x(G*) - T=U+R. (2)
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The new object U is called the irreducible vertex. The dots denote convolu-
tions in space-time. This so-called Bethe-Salpeter equation can be formally
iterated to yield a multiple scattering series for the two-particle Green’s
function with U as an elementary building block. This iteration provides a
new “reducible vertex” R that contains all multiple scattering events except
the elementary block U.

Although U may look like a complicated object, it has one simple,
but important property that we will now discuss. Let us for simplicity
adopt monochromatic waves with frequency w so that the time dependence
exp(—iwt;) becomes trivial. We first observe that spatial reciprocity (i.e.,
interchanging detector and source) imposes the following reciprocity rela-
tions for the two-particle Green’s function [5, 28],

F(rla re,rs, I'4) == I‘(I‘3,I‘4,I‘1, I'2) == I‘(I‘3,I‘2,I‘1,I‘4) . (3)

The first identity is the well-known, classical reciprocity relation in radiative
transfer [29], and is also obeyed by R and U separately. However, neither
U nor R is expected to obey the second reciprocity identity. A somewhat
technical inspection learns that interchanging source and detector only for
the field going 1 — 3 without doing the same procedure for the field that
travel from 2 — 4 turns any contribution to R into an irreducible contribu-
tion to U [30]. The reverse, however, is not true. This is expressed by the
following, unique decomposition

U(ry,ra,r3,rq) = C(ry,ra,r3,rq4) + S(ry,ra,r3,ry), (4)
where the vertex C is obtained from R using the reciprocity operation,
C(r1,re,r3,rq) = R(rg,ra,r1,ry4), (5)
and S is a set of scattering diagrams that is transformed into itself,
S(rq1,re,r3,rq) = S(rs,ra,r1,rs). (6)

Single scattering can easily be seen to be part of S. The classical picture of
radiative transfer emerges when for U and S single scattering is adopted as
an approximate building block for multiple scattering [31]. However, this
procedure disregards the existence of C, so that classical radiative transfer
does not obey the reciprocity principle (3). The vertices C and S give rise to
physical phenomena that are not described by classical radiative transfer.
The object C'is the most general formulation possible to describe enhanced
backscattering, an interference effect that has been observed with light [7]
and acoustic waves [32], and recently even in a cold rubidium gaz [33].
In addition to single scattering, the set S contains recurrent scattering
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events. They are known to affect the celebrated enhancement factor of two
in backscattering [28] as also observed [34].

For practical calculations, one can observe that the vertices R and C'
typically start and end at a scattering particle that is assumed small com-
pared to the mean free path. Therefore, one expects the relations [35]

d(r1 —r2)d(rg —rq)F(r1,rs),
5(1‘3 — 1'2)(5(1‘1 — I'4)F(I'1, I'3) 5 (7)

R(I‘l, rs,rs, 1‘4) ~
C(I‘l, re,I'g, 1‘4) ~
leaving only two independent positions by means of the function F(rq,rs).
The reciprocity principle (5) imposes the appearance of the same, symmet-
ric function F' in both R and C'. Physically, the function F' describes how
(stationary) multiple scattering transfers radiation from one place to the
other. It has a hydrodynamic long range behavior: in an infinite 3D medium
it decays as 1/|r1 — rg| for large separations. This in sharp contrast to the
vertex S, which represents a kind of “super” single scattering, including
loops in the medium. One may assert short range behavior, i.e.,

S(I‘I,I‘z,l‘3, I‘4) ~ 5(1‘1 — 1‘2)5(1‘3 — I‘4)5(I‘1 — I‘3)S(I‘1) s (8)

as it should be if S is to be a good “building block.”

The relations (2), (4) and (5) show that reciprocity relates the output I
of the transport equation directly to its input U. As a result, the problem of
writing down and solving a transport equation is a self-consistent problem.
This is the basic message of the self-consistent theory of localization. We
refer to the excellent review by Wolfle and Vollhardt [5] for some subtle
complications and for more details.

2.1. DIFFUSION APPROXIMATION

The self-consistent problem has so far only been worked out in the diffu-
sion approximation. On length scales larger than the mean free path, the
transport equation for F(rq,rz) reduces to a diffusion equation. This is a
well-known consequence of flux conservation [31]. The diffusion coefficient is
related to the irreducible vertex U [31]. The Boltmann diffusion coefficient
Dp is obtained if for U ordinary single scattering is adopted. Inclusion of
C gives the following equation,

11 F(r,r) (9)
D) ~ D | mve(k)p(k)
The physics behind the “weak localization” term is the constructive interfer-

ence of reciprocal paths at position r, expressed by the “return probability”
F(r,r). We will ignore the difference between extinction length, scattering
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and Boltzmann transport mean free path and represent all by £. With vg
the transport speed of light and k its wave number we have (in 3D) the
familiar relations Dp = tvgl [31], and p(k) ~ k*/7%vg for the density of
states per unit volume. Both k, £ and vg have been calculated near the
localization threshold [36].

The stationary diffusion equation for F' is
/ 4m /
-V -D(r)VF(r,r') = 76(r —r). (10)

The factor 47 /¢ appears when single scattering is adopted as a source for
multiple scattering.

Equations (9) and (10) must contain one and the same diffusion co-
efficient, and one seeks for a “self-consistent” solution. In infinite media,
F(r,r') is translationally invariant, so that the return probability F(r,r)
and diffusion coefficient D(r) do not depend on r. In reciprocal space is
C(q) = 4w /LDg?, so that C(r,r) = 3, C(q) ~ p/D¢?, assuming an upper
cut-off gmax = 1/¢ to regularize the diverging wavenumber integral. Hence,

D= Dp <1—#). (11)

This is the standard “Vollhardt and Wolfle” result in three dimensions. The
mobility edge, if defined by D = 0 [8], obeys a loffe-Regel type criterion as
derived microscopically by John et al. [37] and Economou et al. [38], and
agrees with numerical studies of the Anderson Tight Binding model [39, 40].
The obligation to use a cut-off, which somewhat arbitrarily eliminates wave
paths shorter than the mean free path from the return probability, high-
lights the partial failure of the diffusion approximation. Some controversy
existed about the choice of this cut-off, an important issue as it influences
the exact location of the mobility edge [38, 41, 42]. A careful analysis of
the exact formulas demonstrated the choice gmax = p/f to be approxi-
mately correct [43]. For u = 1, the mobility edge is conveniently located at
k¢ = 1, which is close to predictions made by the Potential Well Analogy
(k¢ = 0.84) [38] and by point scatterer models (k¢ = 0.97) [43].

The essence of our work is that absence of translational symmetry in
finite media imposes the diffusion coefficient D(r) to depend on r. This con-
clusion is unavoidable if one doesn’t wish to give up the basic ingredients
of the self-consistent theory of localization: reciprocity and flux conserva-
tion. Previous applications of the self-consistent theory accounted for the
boundaries by means of a second, lower cut-off [3, 4].
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3. Application to a Slab Geometry

We consider stationary propagation in a slab geometry of thickness L and
infinite width, and Fourier transform (qj) the transverse coordinate. For
0 < z< L, Egs. (9) and (10) become

4
—0,D(2) 0, F(z,7, q)) + D(z)qﬁF(z, 2, q)) = 75(,2 -2, (12)
1 1 2 Ut
D)~ Ds ey, /0 daj qF(z,2,q)), (13)
F(0,2',q)) — 2¢(0)0,F(0,2', ) = 0, (14)
F(L,7, q) + 2ze(L)0. F(L, 2, qp) =0. (15)

The last two equations are the familiar radiative boundary conditions at
both sides of the slab, featuring the “extrapolation lengths” z.(0/L) =
320D (0/L)/vg [44]. They contain the diffusion coefficient, D(0/L), at the
boundaries so that z. is always non-zero, even in the localized regime,
when D vanishes in the bulk. The value, zy = %, corresponds to no internal
reflection, but is much larger in recent localization experiments [15, 16] due
to internal reflection. Equation (12) is recognized as an ordinary, second
order differential equation with a source term. Without the latter, two
independent solutions fi(z) exist with a non-zero Wronskian W (q) =
D(z) x (f\.f- — f_f+), independent of z.

We first discuss the semi-infinite medium L = oo. Let fi(z) be the
growing solution. As F(z,2’, ) must be bounded at large z, 2/, Eq. (12) is
solved for

o f+(z<)f_(z>)

F(z,7,q)) = W)t P(q)f-(2)f-(), (16)

where z. = min(z,7’), z» = max(z,2’) and P(q) follows easily from the
boundary condition (14). At the mobility edge we assert the simple alge-
braic form,

_ _D
Cl4z/e

with two free parameters D(0) and .. The homogeneous solutions would
then be,

D(z) (17)

f+(2) =+ &) (gl + &)
f-(2) = G+ &K (g1l + &) (18)

in terms of the modified Bessel functions I; and K7 with Wronskian W =
D(0)¢. [45]. Equation (16) learns that C(z,z,q)) rises linearly in z for
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large z and that Eq. (13) is indeed asymptotically satisfied. Equation (13)
evaluated at z = 0 gives a relation between D(0) and .. The remaining
freedom in &. can be used to optimize self-consistency below 0.05 %. Both
. and D(0) depend heavily on the parameter zj in the boundary condition
(see Table 3).

Table 1. Solution D(z) = D(0)/(1 + z/&:) of the self-consistent equations at the
mobility edge k¢ = 1 for a semi-infinite slab as a function of the parameter zo that controls
internal reflection at the boundary. The middle column reveals that D(0) ~ 1/z. For

2o = oo one expects D = 0 for all z.

z0 | D(0)/Dp | &/t
2/3 | 0.642 1.5

3 0.336 3
5 0.249 4
7 0.203 6
10 0.159 8

20 0.0968 25

The line shape I.(¢) in enhanced backscattering can be obtained from
C(z,7,q)) using standard methods [46]. Insight is provided by the approx-
imate formula I.(0) =~ C(z = {,2' = £, q = 2ksin6/2), used by De Vries et
al. [44]. The line shape exhibits a logarithmic rounding

Ic(o) ~ 1+ ze(o)£CQﬁ log(q\\fc) ) (19)

when ¢§ < 1, rather than the familiar cusp I.(6) ~ 1—z.|q| [46]. Berkovits
and Kaveh [26] predicted a rounding of the line shape on the basis of the
non-local diffusion kernel D(q).

The localized regime corresponds to k¢ < 1. We may assert the so-
lution D(z) = D(0)exp(—2z/), with & the localization length. We find

f(2) = exp(—Ayz) with Ay = 1/ + 1/qﬁ +1/£2, and Wronskian W =

2D(0), /qﬁ + 1/£2. Equation (13) is indeed satisfied for z > ¢ if we adopt

the localization length &/¢ = 2(k¢)%/[1 — (kf)*], with a critical exponent
of unity. The same equation evaluated at z = 0 provides D(0). The above
exponential ansatz for D is found to be satisfactory for all z if 2y > 10, but
for smaller internal reflection we found less agreement. The line shape is
approximately given by

,(6) ~ 1 (20)

1= 20(0)/6 + 26(0), /a? +1/€2
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total transmission of a slab

10 10°

slab length in extinction lengths

Figure 1. Numerical solution of the self-consistent equations for a finite slab. Total
transmission coefficient as a function of the slab length, L, for the critical value k¢ = 1,
and in the delocalized regime k¢ = 1.1. The dashed lines have slopes —2 and —1. We
have adopted an internal-reflection parameter zo = 10.

This indicates an analytical rounding for § < 1/k&, reminiscent of an ab-
sorbing semi-infinite medium in the delocalized regime, a case that must
be excluded experimentally [16].

One can use the solution Dy (z) for the semi-infinite medium to estimate
the length dependence of the total transmission T'(L) of a slab with length
L. We expect that D(z) ~ Doo(3L — |5L — 2]) i.e., symmetric in the central
plane z = %L. For a point source close to the boundary z = 0, the diffusion
equation predicts,

-1
T(L) = 2 <zzoz+ /0 Ldz%) . (21)

The integral is proportional to the “optical thickness” of the slab. Equation
(21) gives,

420 (Do(0)/Dp) (&c/0) x (¢/L)* kL =1
TE) = { ZOO(Doo(O)/DBE)g (£/€) x >e<Xp(—L/f) ke <1 (22)

This scale dependence agrees with scaling theory [5, 47], but has large and
precise prefactors: 2.6 for k¢ =1 and 2y = %, and increasing with zg.

Figure 1 shows that 1/L? law predicted at the mobility edge rapidly dis-
appears in the delocalized regime k¢ > 1. It has been reported by Genacket
al. [14] for microwaves and by Wiersma et al. [15] for GaAs samples.



484

4. Application to a Tube

A “quasi 1D” medium is characterized by a transverse surface A < £2, so
that only the transverse mode g = 0 contributes to Eq. (13), with weight
1/A. Tt differs from a genuine 1D medium in that the diffusion picture
is still believed to apply for not too large lengths. The tube geometry is
studied experimentally with microwaves in the group of Genack [48]. Define
the length &€ = Ap(k)vgl. In RMT this length emerges as the localization
length of the tube in the presence of time-reversal [49]. Upon introducing

the “optical depth” as
Dg

7(z) = /O Y. et (23)

Equation (12) reduces to the conventional diffusion equation,
~O2F(r,7)=6(r -7, (24)

whose solution is easily obtained using the radiative boundary conditions
at 7(0) = 0 and 7(L) = b. The self-consistent Eq. (13) imposes that

d 1 1
—T:1+—F(T,T):1+g

(T4 20)(b+ 20 —T)
dz ¢ ’

b+2ZQ

(25)

For a semi-infinite quasi 1D medium (b = co) this equation has the exact
solution

D L, 2] 2 26

(0= |+ oe] e(-22/6). (29)
For a finite length of the tube the total transmission, calculated from
Eq. (21), is plotted in Figure 2. It compares very well to the solution of
RMT published by Zirnbauer [49], in particular the cross-over from ¢/L to
exp(—L/€). The RMT result has an extra 1/L%? factor in the transmission.
Not unexpectedly, Eq. (26) shows the diffusion coefficient at the boundary
to be sensitive to the amount of internal reflection, as quantified by the
extrapolation parameter zy. This was also seen to be the case for the slab
geometry.

5. Application to a Sphere: Thouless’ Criterion

For a sphere with radius a one expects a diffusion coefficient D(r) that
depends only on the distance r to the origin. An expansion into spherical
harmonics yields the self-consistent problem,

—0,m*D(r)0, Fy(r,v") + D(MI(L+ 1)Fy(r,r") = 6(r —1')  (27)
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transmission of quasi—1D tube
10 e

0% 107" 10 10 10

length in localization lengths

Figure 2. Solution of the self-consistent equations for a quasi-1D medium. Plotted is
the average transmission as a function of the thickness of the tube. Dashed lines denote
the Ohmic 1/L behavior that applies for small lengths and the localized exponential law
that applies for large lengths. The extrapolation length has been chosen much smaller
than the localization length.

Dtr) — o+ SCEREIY (28)
Fy(a,r") + &OTZ(Q)(?TE(CL,T') =0. (29)

The sum over the angular quantum numbers [ diverges. It is reasonable
to adopt an upper cut-off lj,,x &~ r/¢ which is consistent with the choice
gmax = 1/¢ made earlier. In particular, close to the center (r < £) only the
s-wave spherical harmonic [ = 0 contributes. The above equations will be
solved for a very large sphere a > ¢ and for the critical value k¢ = 1. We
will verify Thouless’ assertion that the diffusion coefficient at the mobility
edge scales inversely with the size of the sphere, i.e., D ~ 1/a (see e.g.,
Ref. [31] for a good discussion).

Equation (27) can easily be solved analytically for I = 0. Inserting its
solution into Eq. (28) yields,

1 1 1 a dr 20l
L L e 30
D) Dp | K [/K D) | opa? (30)

For a very large sphere, the solution (17) for a planar slab should apply
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near the boundaries. At the mobility edge k¢ = 1 we assert the profile,

1+(a—71)/z
1+((Z—T)/£C’

with . < z. < a. The parameters . and D(a) are known from the slab
geometry. The length z. is to be determined and denotes the depth be-
yond which the diffusion coefficient takes its bulk value. Putting the con-
jecture (31) into Eq. (30) gives z. =~ a+/&./log(a/€)\/D(a)/Dp. As a result,
at depths exceeding z. the diffusion profile takes the constant value

D =~ D(a)i—z ~ D(a) x % \/log(a/?) . (32)

This confirms the Thouless conjecture that at the mobility edge the diffu-
sion coefficient D scales inversely with the size of the sphere. Note that, for
our approach to be valid, we demand +/log(a/¢) to be a large number. The
sphere must thus really be very large.

D(r) = D(a) (31)
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